Review
BibTex RIS Cite

Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents

Year 2017, Volume: 47 Issue: 2, 72 - 76, 18.10.2017

Abstract

Recently, because of the rising in multidrug
resistance from infectious agents, there is a prompted interest for the
development of new antimicrobial agents and new therapeutic strategies to
combat the infections caused by the resistant bacteria. Among them, the natural
bactericidal compounds, such as antimicrobial cationic peptides (AMPs) seems
very promising agents. AMPs are the important component of the innate immune
response to the surrounding microorganisms. This substances which can be
isolated from most of the living organisms, have various activity like broad
spectrum antibacterial, antifungal, antiviral, and antiprotozoal. However there
are some resistance mechanisms that affects the AMPs, because of the rapid
action and existing more than one mechanism of action, development of
resistance to AMPs is quite rare. Due to their many advantages and
characteristics, AMPs looks like a good candidate for being a new generation,
active antimicrobial agent for antimicrobial chemotherapy against especially
multi drug resistant bacteria and biofilms, either alone or in combination. 

References

  • • Akova M (2016) Epidemiology of antimicrobial resistance in bloodstream infections, Virulence, 7: 252-266. [CrossRef] • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides, Biochim Biophys Acta., 1758: 1529-1539. [CrossRef] • Cao Y, Yu RQ, Liu Y, Zhou HX, Song LL, Cao Y, Qiao DR (2010) Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides, Curr. Microbiol., 61: 169-175. [CrossRef] • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives, J Antibiot., 63: 423-430. [CrossRef] • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process, Clin Infect Dis., 33: 1387–1392. [CrossRef] • Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides, Peptides, 63: 32-37. [CrossRef] • Dosler S, Mataraci E (2013) In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms, Peptides, 49: 53-58. [CrossRef] • Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities, Front Chem, 5: 1-9. [CrossRef] • Findlay F, Proudfoot L, Stevens C, Barlow PG (2016) Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections, Pathog Glob Health, 110: 137-147. [CrossRef] • Giamarellou H (2010) Multidrug-resistant gram-negative bacteria: how to treat and for how long, International Journal of Antimicrobial Agents, 36: S50–S54. [CrossRef] • Griffith GL, Kasus-Jacobi A, Pereira HA (2017) Bioactive antimicrobial peptides as therapeutics for corneal wounds and infections, Adv Wound Care (New Rochelle), 6: 175-190. [CrossRef] • Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva- Pereira I, Kyaw CM (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides of bacterial resistance, Front Microbiol, 4: 1-12. [CrossRef] • Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet Infect Dis, 1: 156-164. [CrossRef] • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol, 24: 1551-1557. [CrossRef] • Hancock RE., Chapple DS (1999) Peptide antibiotics, Antimicrob Agents Chemother., 43: 1317-1323. • Høiby N, Bjarnsholt T, Givskov M (2010) Antibiotic resistance of bacterial biofilms, Int L Antimicrob Agents, 35: 322-332. [CrossRef] • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents, Clin Microbiol Rev, 19: 491-511. [CrossRef] • Jorge P, Lourenço A, Pereira MO (2012) New trends in peptidebased anti-biofilm strategies: a review of recent achievements and bioinformatic approaches, Biofouling, 28: 1033-1061. [CrossRef] • McCafferty DG, Cudic P, Yu MK, Behenna DC, Kruger R (1999) Synergy and duality in peptide antibiotic mechanisms, Curr Opin Chem Biol, 3: 672-680. [CrossRef] • Mendez-Samperio P (2013) Recent advances in the field of antimicrobial peptides in inflammatory diseases, Adv Biomed Res, 2:50-55. [CrossRef] • Naim H, Rizvi M, Azam M, Gupta R, Taneja N, Shukla I, Khan HM (2017) Alarming emergence, molecular characterization, and outcome of blaNDM-1 in patients infected with multidrugresistant Gram-negative bacilli in a tertiary care hospital, J Lab Physicians, 9: 170-176. [CrossRef] • Nawrocki KL, Crispell EK, McBride SM (2014) Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria, Antibiotics (Basel), 3: 461–492. [CrossRef] • Otvos L. Jr (2005) Antibacterial peptides and proteins with multiple cellular targets, J Peptide Sci, 11: 697–706. [CrossRef] • Raghuraman H, Chattopadyay A (2007) Melittin: a membraneactive peptide with diverse function, Biosci Rep, 27: 189-223. [CrossRef] • Rosenthal VD, Al-Abdely HM, El-Kholy AA, AlKhawaja SA, Leblebicioglu H, Mehta Y, Rai V, et al (2016) International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated modüle, Am J Infect Control, 44: 1495-1504. [CrossRef] • Sawyer JG, Martin NL, Hancock REW (1988) Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa, Infect Immun, 56: 693-698. • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils, J. Biol. Chem, 267: 4292-4295. • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review, Molecules. 17: 12276-12286. [CrossRef] • Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC et al (1997) Protegrin-1: a broad- spectrum, rapidly microbicidal peptide with in vivo activity, Antimicrob Agents Chemother, 41: 1738-1742. • Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial Peptides in 2014, Pharmaceuticals, 8: 123-150. [CrossRef] • Wang G (2015) Improved methods for classification, prediction, and design of antimicrobial peptides, Methods Mol Biol, 1268: 43- 66. [CrossRef] • Willey JM, Van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function, Annu. Rev. Microbiol, 61: 477–501. [CrossRef] • World Health Organization (2014) Antimicrobial resistance: global report on surveillance 2014, Geneva, Switzerland: WHO. • World Health Organization (2015) Antimicrobial resistance. Draft global action plan on antimicrobial resistance, Geneva, Switzerland: WHO. • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance, Pharmacol Rev, 55: 27-55. [CrossRef] • Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications, Cell Mol Life Sci, 68: 2161-2176. [CrossRef]
Year 2017, Volume: 47 Issue: 2, 72 - 76, 18.10.2017

Abstract

References

  • • Akova M (2016) Epidemiology of antimicrobial resistance in bloodstream infections, Virulence, 7: 252-266. [CrossRef] • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides, Biochim Biophys Acta., 1758: 1529-1539. [CrossRef] • Cao Y, Yu RQ, Liu Y, Zhou HX, Song LL, Cao Y, Qiao DR (2010) Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides, Curr. Microbiol., 61: 169-175. [CrossRef] • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives, J Antibiot., 63: 423-430. [CrossRef] • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process, Clin Infect Dis., 33: 1387–1392. [CrossRef] • Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides, Peptides, 63: 32-37. [CrossRef] • Dosler S, Mataraci E (2013) In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms, Peptides, 49: 53-58. [CrossRef] • Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities, Front Chem, 5: 1-9. [CrossRef] • Findlay F, Proudfoot L, Stevens C, Barlow PG (2016) Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections, Pathog Glob Health, 110: 137-147. [CrossRef] • Giamarellou H (2010) Multidrug-resistant gram-negative bacteria: how to treat and for how long, International Journal of Antimicrobial Agents, 36: S50–S54. [CrossRef] • Griffith GL, Kasus-Jacobi A, Pereira HA (2017) Bioactive antimicrobial peptides as therapeutics for corneal wounds and infections, Adv Wound Care (New Rochelle), 6: 175-190. [CrossRef] • Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva- Pereira I, Kyaw CM (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides of bacterial resistance, Front Microbiol, 4: 1-12. [CrossRef] • Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet Infect Dis, 1: 156-164. [CrossRef] • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol, 24: 1551-1557. [CrossRef] • Hancock RE., Chapple DS (1999) Peptide antibiotics, Antimicrob Agents Chemother., 43: 1317-1323. • Høiby N, Bjarnsholt T, Givskov M (2010) Antibiotic resistance of bacterial biofilms, Int L Antimicrob Agents, 35: 322-332. [CrossRef] • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents, Clin Microbiol Rev, 19: 491-511. [CrossRef] • Jorge P, Lourenço A, Pereira MO (2012) New trends in peptidebased anti-biofilm strategies: a review of recent achievements and bioinformatic approaches, Biofouling, 28: 1033-1061. [CrossRef] • McCafferty DG, Cudic P, Yu MK, Behenna DC, Kruger R (1999) Synergy and duality in peptide antibiotic mechanisms, Curr Opin Chem Biol, 3: 672-680. [CrossRef] • Mendez-Samperio P (2013) Recent advances in the field of antimicrobial peptides in inflammatory diseases, Adv Biomed Res, 2:50-55. [CrossRef] • Naim H, Rizvi M, Azam M, Gupta R, Taneja N, Shukla I, Khan HM (2017) Alarming emergence, molecular characterization, and outcome of blaNDM-1 in patients infected with multidrugresistant Gram-negative bacilli in a tertiary care hospital, J Lab Physicians, 9: 170-176. [CrossRef] • Nawrocki KL, Crispell EK, McBride SM (2014) Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria, Antibiotics (Basel), 3: 461–492. [CrossRef] • Otvos L. Jr (2005) Antibacterial peptides and proteins with multiple cellular targets, J Peptide Sci, 11: 697–706. [CrossRef] • Raghuraman H, Chattopadyay A (2007) Melittin: a membraneactive peptide with diverse function, Biosci Rep, 27: 189-223. [CrossRef] • Rosenthal VD, Al-Abdely HM, El-Kholy AA, AlKhawaja SA, Leblebicioglu H, Mehta Y, Rai V, et al (2016) International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated modüle, Am J Infect Control, 44: 1495-1504. [CrossRef] • Sawyer JG, Martin NL, Hancock REW (1988) Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa, Infect Immun, 56: 693-698. • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils, J. Biol. Chem, 267: 4292-4295. • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review, Molecules. 17: 12276-12286. [CrossRef] • Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC et al (1997) Protegrin-1: a broad- spectrum, rapidly microbicidal peptide with in vivo activity, Antimicrob Agents Chemother, 41: 1738-1742. • Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial Peptides in 2014, Pharmaceuticals, 8: 123-150. [CrossRef] • Wang G (2015) Improved methods for classification, prediction, and design of antimicrobial peptides, Methods Mol Biol, 1268: 43- 66. [CrossRef] • Willey JM, Van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function, Annu. Rev. Microbiol, 61: 477–501. [CrossRef] • World Health Organization (2014) Antimicrobial resistance: global report on surveillance 2014, Geneva, Switzerland: WHO. • World Health Organization (2015) Antimicrobial resistance. Draft global action plan on antimicrobial resistance, Geneva, Switzerland: WHO. • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance, Pharmacol Rev, 55: 27-55. [CrossRef] • Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications, Cell Mol Life Sci, 68: 2161-2176. [CrossRef]
There are 1 citations in total.

Details

Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review
Authors

Sibel Döşler This is me

Publication Date October 18, 2017
Submission Date October 18, 2017
Published in Issue Year 2017 Volume: 47 Issue: 2

Cite

APA Döşler, S. (2017). Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. İstanbul Journal of Pharmacy, 47(2), 72-76.
AMA Döşler S. Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. iujp. August 2017;47(2):72-76.
Chicago Döşler, Sibel. “Antimicrobial Peptides: Coming to the End of Antibiotic Era, the Most Promising Agents”. İstanbul Journal of Pharmacy 47, no. 2 (August 2017): 72-76.
EndNote Döşler S (August 1, 2017) Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. İstanbul Journal of Pharmacy 47 2 72–76.
IEEE S. Döşler, “Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents”, iujp, vol. 47, no. 2, pp. 72–76, 2017.
ISNAD Döşler, Sibel. “Antimicrobial Peptides: Coming to the End of Antibiotic Era, the Most Promising Agents”. İstanbul Journal of Pharmacy 47/2 (August 2017), 72-76.
JAMA Döşler S. Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. iujp. 2017;47:72–76.
MLA Döşler, Sibel. “Antimicrobial Peptides: Coming to the End of Antibiotic Era, the Most Promising Agents”. İstanbul Journal of Pharmacy, vol. 47, no. 2, 2017, pp. 72-76.
Vancouver Döşler S. Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. iujp. 2017;47(2):72-6.