Review
BibTex RIS Cite

Reshaping cytoskeleton: different acts of modulatory compounds

Year 2020, Volume: 50 Issue: 3, 304 - 311, 30.12.2020

Abstract

The eukaryotic cytoskeleton is composed of filamentous structures, namely microfilaments, microtubules and intermediate filaments. The cytoskeleton is an essential component of cells due to its role in various cellular functions, such as intracellular transport, organelle positioning, chromosome segregation and cytokinesis. Abnormalities in cytoskeleton, as well as associated proteins and regulatory pathways, have been shown to contribute to disease pathomechanisms including cancer and neurodegenerative diseases. Therefore, cytoskeleton is an important therapeutic target and many compounds have been identified or developed to modulate the cytoskeleton. In this review, we focused on cytoskeleton modulatory compounds and summarized their mechanisms of action.

References

  • • Amin, E., Dubey, B. N., Zhang, S. C., Gremer, L., Dvorsky, R., Moll, J. M., ... & Ahmadian, M. R. (2013). Rho-kinase: regulation, (dys) function, and inhibition. Biological Chemistry, 394(11): 1399–1410. doi:10.1515/hsz-2013-0181.
  • • Bora, G., Sucularlı, C., Hensel, N., Claus, P., & Yurter, H. E. (2019). Investigations of Microtubule-associated Protein 2 Gene Expression in Spinal Muscular Atrophy. The Journal of Pediatric Research, 6(2), 148–154. doi: 10.4274/jpr.galenos.2019.71473
  • • Bora, G., Koyunoğlu, D., Sunguroğlu, M., & Yurter, H. E. (2019). Microtubule Structure, Organization and Defects: Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis. Turkiye Klinikleri Journal of Medical Sciences, 39(2), 221–230. doi: 10.5336/medsci. 2018-63881
  • • Brown, S. S., & Spudich, J. A. (1979). Nucleation of polar actin filament assembly by a positively charged surface. The Journal of Cell Biology, 80, 499-504. doi: 10.1083/jcb.80.2.499 • Brown, S. S., & Spudich, J. A. (1981). Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. The Journal of Cell Biology, 88(3), 487–491. doi: 10.1083/jcb.88.3.487
  • • Brunden, K. R., Yao, Y., Potuzak, J. S., Ferrer, N. I., Ballatore, C., James, M. J., …Lee, V. M. Y. (2011). The characterization of microtubulestabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacological Research, 63(4), 341–351. https://doi.org/10.1016/j.phrs.2010.12.002
  • • Bryce, N. S., Hardeman, E. C., Gunning, P. W., & Lock, J. G. (2019). Chemical biology approaches targeting the actin cytoskeleton through phenotypic screening. Current Opinion in Chemical Biology, 51, 40–47. doi: 10.1016/j.cbpa.2019.02.013
  • • Carlier, M. F. (2001). Faculty of 1000 evaluation for A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions. F1000 - Post-Publication Peer Review of the Biomedical Literature. doi: 10.3410/f.1000267.14705
  • • Chen, Y., & Hancock, W. O. (2015). Kinesin-5 is a microtubule polymerase. Nature Communications, 6(1). doi: 10.1038/ncomms9160 • Colchicine for Amyotrophic Lateral Sclerosis - Full Text View. (n.d.). Retrieved from https://clinicaltrials.gov/ct2/show/NCT03693781
  • • Coluccio, L. M., & Tilney, L. G. (1984). Phalloidin enhances actin assembly by preventing monomer dissociation. Journal of Cell Biology, 99(2), 529–535. https://doi.org/10.1083/jcb.99.2.529
  • • Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., Eiffe, E., … Cripe, T. P. (2017). Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapeutics, 16(8), 1555–1565. doi: 10.1158/1535-7163. mct-16-0873
  • • Dalbeth, N., Lauterio, T. J., & Wolfe, H. R. (2014). Mechanism of action of colchicine in the treatment of gout. Clinical Therapeutics, 36(10), 1465–1479. https://doi.org/10.1016/j.clinthera.2014.07.017
  • • Dubey, J., Ratnakaran, N., & Koushika, S. P. (2015). Neurodegeneration and microtubule dynamics: Death by a thousand cuts. Frontiers in Cellular Neuroscience, 9(September), 1–15. https://doi. org/10.3389/fncel.2015.00343
  • • Engel, T., Goñi-Oliver, P., Lucas, J. J., Avila, J., & Hernández, F. (2006). (Engel et al., 2006) pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 99(6), 1445–1455. https://doi. org/10.1111/j.1471-4159.2006.04139.x
  • • Evans, K. J., Gomes, E. R., Reisenweber, S. M., Gundersen, G. G., & Lauring, B. P. (2005). Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. Journal of Cell Biology 168, 599–606. https://doi.org/10.1083/jcb.200409058
  • • Gandalovičová, A., Rosel, D., Fernandes, M., Veselý, P., Heneberg, P., Čermák, V., … Brábek, J. (2017). Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends in Cancer, 3(6), 391–406. https://doi.org/10.1016/j.trecan.2017.04.008
  • • Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H., & Goldman, R. D. (2012). Withaferin A alters intermediate filament organization, cell shape and behavior. PLoS ONE, 7(6), 1–13. https://doi.org/10.1371/journal.pone.0039065
  • • Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., … Van Den Bosch, L. (2017). HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUSALS patients. Nature Communications, 8(1), 1–14. https://doi. org/10.1038/s41467-017-00911-y.
  • • Hazan, J., Fonknechten, N., Mavel, D., Paternotte, C., Samson, D., Artiguenave, F., … Weissenbach, J. (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genetics, 23(3), 296–303. doi: 10.1038/15472
  • • Janke, C., & Kneussel, M. (2010). Tubulin post-translational modifications: Encoding functions on the neuronal microtubule cytoskeleton. Trends in Neurosciences, 33(8), 362–372. https://doi. org/10.1016/j.tins.2010.05.001
  • • Lee, J. J., & Swain, S. M. (2008). The epothilones: Translating from the laboratory to the clinic. Clinical Cancer Research, 14(6), 1618– 1624. https://doi.org/10.1158/1078-0432.CCR-07-2201
  • • Lei, P., Ayton, S., Bush, A. I., & Adlard, P. A. (2011). GSK-3 in neurodegenerative diseases. International Journal of Alzheimer’s Disease, 2011. https://doi.org/10.4061/2011/189246
  • • Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L., & Darnell, J. (2003). Molecular Cell Biology. New York: W. H. Freeman.
  • • Nakashima, S., Matsuda, H., Kurume, A., Oda, Y., Nakamura, S., Yamashita, M., & Yoshikawa, M. (2010). Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorganic and Medicinal Chemistry Letters, 20(9), 2994–2997. https://doi.org/10.1016/j.bmcl.2010.02.062
  • • Niel, E., & Scherrmann, J. M. (2006). Colchicine today. Joint Bone Spine, 73(6), 672–678. https://doi.org/10.1016/j.jbspin.2006.03.006
  • • Overmoyer, B., Waintraub, S., Kaufman, P. A., Doyle, T., Moore, H., Modiano, M., … Demario, M. (2005). Phase II trial of KOS-862 (epothilone D) in anthracycline and taxane pretreated metastatic breast cancer. Journal of Clinical Oncology, 23(16_suppl), 778–778. doi: 10.1200/jco.2005.23.16_suppl.778
  • • Palazzo, A., Ackerman, B., & Gundersen, G. G. (2003). Tubulin acetylation and cell motility. Nature, 421(6920), 230. https://doi. org/10.1038/421230a
  • • Peterson, J. R., & Mitchison, T. J. (2002). Small molecules, big impact: A history of chemical inhibitors and the cytoskeleton. Chemistry and Biology, 9(12), 1275–1285. https://doi.org/10.1016/ S1074-5521(02)00284-3
  • • Roossien, D. H., Miller, K. E., & Gallo, G. (2015). Ciliobrevins as tools for studying dynein motor function. Frontiers in Cellular Neuroscience, 9(JULY), 1–10. https://doi.org/10.3389/fncel.2015.00252
  • • Sánchez, C., Pérez, M., & Avila, J. (2000). GSK3β-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. European Journal of Cell Biology, 79(4), 252–260. https://doi.org/10.1078/S0171-9335(04)70028-X
  • • Schofield, A. V., Steels, R., & Bernard, O. (2012). Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. Journal of Biological Chemistry, 287(52), 43620–43629. https://doi. org/10.1074/jbc.M112.394965
  • • Selenica, M. L., Jensen, H. S., Larsen, A. K., Pedersen, M. L., Helboe, L., Leist, M., & Lotharius, J. (2007). Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. British Journal of Pharmacology, 152(6), 959–979. doi: 10.1038/sj.bjp.0707471
  • • Steinmetz, M. O., & Prota, A. E. (2018). Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends in Cell Biology, 28(10), 776–792. https://doi.org/10.1016/j.tcb.2018.05.001
  • • Trivedi, N., Marsh, P., Goold, R. G., Wood-Kaczmar, A., & Gordon- Weeks, P. R. (2005). Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons. Journal of Cell Science, 118(5), 993–1005. https:// doi.org/10.1242/jcs.01697
  • • Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., & Snider, N. T. (2018). An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. Federation of American Societies for Experimental Biology Journal, 32(5), 2841–2854. https://doi.org/10.1096/fj.201700663R
  • • Xu, W., Ge, Y., Liu, Z., & Gong, R. (2015). Glycogen synthase kinase 3β orchestrates microtubule remodeling in compensatory glomerular adaptation to podocyte depletion. Journal of Biological Chemistry, 290(3), 1348–1363. https://doi.org/10.1074/jbc.M114.593830
  • • Yee, L., Lynch, T., Villalona-Calero, M., Rizvi, N., Gabrail, N., Sandler, A., … Palmer, G. (2005). A phase II study of KOS-862 (epothilone D) as second-line therapy in non-small cell lung cancer. Journal of Clinical Oncology, 23(16_suppl), 7127–7127. doi: 10.1200/ jco.2005.23.16_suppl.7127
  • • Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., & Kaibuchi, K. (2005). GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 120(1), 137–149. https://doi. org/10.1016/j.cell.2004.11.012
  • • Zemer, D., Pras, M., Sohar, E., Modan, M., Cabili, S., & Gafni, J. (1986). Colchicine in the prevention and treatment of the amyloidosis of Familial Mediterranean fever. The New England Journal of Medicine, 314, 1001-1005. doi:10.1056/NEJM198604173141601
  • • Zhang, B., Carroll, J., Trojanowski, J. Q., Yao, Y., Iba, M., Potuzak, J. S., … Brunden, K. R. (2012). The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 32(11), 3601–3611. doi: 10.1523/jneurosci.4922-11.2012
  • • Zigmond, S. H. (2000). How Wasp Regulates Actin Polymerization. The Journal of Cell Biology, 150(6). doi: 10.1083/jcb.150.6.f117
  • • Zumbrunn, J., Kinoshita, K., Hyman, A. A., & Näthke, I. S. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Current Biology, 11(1), 44–49. doi: 10.1016/s0960-9822(01)00002-1.
Year 2020, Volume: 50 Issue: 3, 304 - 311, 30.12.2020

Abstract

References

  • • Amin, E., Dubey, B. N., Zhang, S. C., Gremer, L., Dvorsky, R., Moll, J. M., ... & Ahmadian, M. R. (2013). Rho-kinase: regulation, (dys) function, and inhibition. Biological Chemistry, 394(11): 1399–1410. doi:10.1515/hsz-2013-0181.
  • • Bora, G., Sucularlı, C., Hensel, N., Claus, P., & Yurter, H. E. (2019). Investigations of Microtubule-associated Protein 2 Gene Expression in Spinal Muscular Atrophy. The Journal of Pediatric Research, 6(2), 148–154. doi: 10.4274/jpr.galenos.2019.71473
  • • Bora, G., Koyunoğlu, D., Sunguroğlu, M., & Yurter, H. E. (2019). Microtubule Structure, Organization and Defects: Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis. Turkiye Klinikleri Journal of Medical Sciences, 39(2), 221–230. doi: 10.5336/medsci. 2018-63881
  • • Brown, S. S., & Spudich, J. A. (1979). Nucleation of polar actin filament assembly by a positively charged surface. The Journal of Cell Biology, 80, 499-504. doi: 10.1083/jcb.80.2.499 • Brown, S. S., & Spudich, J. A. (1981). Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. The Journal of Cell Biology, 88(3), 487–491. doi: 10.1083/jcb.88.3.487
  • • Brunden, K. R., Yao, Y., Potuzak, J. S., Ferrer, N. I., Ballatore, C., James, M. J., …Lee, V. M. Y. (2011). The characterization of microtubulestabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacological Research, 63(4), 341–351. https://doi.org/10.1016/j.phrs.2010.12.002
  • • Bryce, N. S., Hardeman, E. C., Gunning, P. W., & Lock, J. G. (2019). Chemical biology approaches targeting the actin cytoskeleton through phenotypic screening. Current Opinion in Chemical Biology, 51, 40–47. doi: 10.1016/j.cbpa.2019.02.013
  • • Carlier, M. F. (2001). Faculty of 1000 evaluation for A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions. F1000 - Post-Publication Peer Review of the Biomedical Literature. doi: 10.3410/f.1000267.14705
  • • Chen, Y., & Hancock, W. O. (2015). Kinesin-5 is a microtubule polymerase. Nature Communications, 6(1). doi: 10.1038/ncomms9160 • Colchicine for Amyotrophic Lateral Sclerosis - Full Text View. (n.d.). Retrieved from https://clinicaltrials.gov/ct2/show/NCT03693781
  • • Coluccio, L. M., & Tilney, L. G. (1984). Phalloidin enhances actin assembly by preventing monomer dissociation. Journal of Cell Biology, 99(2), 529–535. https://doi.org/10.1083/jcb.99.2.529
  • • Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., Eiffe, E., … Cripe, T. P. (2017). Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapeutics, 16(8), 1555–1565. doi: 10.1158/1535-7163. mct-16-0873
  • • Dalbeth, N., Lauterio, T. J., & Wolfe, H. R. (2014). Mechanism of action of colchicine in the treatment of gout. Clinical Therapeutics, 36(10), 1465–1479. https://doi.org/10.1016/j.clinthera.2014.07.017
  • • Dubey, J., Ratnakaran, N., & Koushika, S. P. (2015). Neurodegeneration and microtubule dynamics: Death by a thousand cuts. Frontiers in Cellular Neuroscience, 9(September), 1–15. https://doi. org/10.3389/fncel.2015.00343
  • • Engel, T., Goñi-Oliver, P., Lucas, J. J., Avila, J., & Hernández, F. (2006). (Engel et al., 2006) pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 99(6), 1445–1455. https://doi. org/10.1111/j.1471-4159.2006.04139.x
  • • Evans, K. J., Gomes, E. R., Reisenweber, S. M., Gundersen, G. G., & Lauring, B. P. (2005). Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. Journal of Cell Biology 168, 599–606. https://doi.org/10.1083/jcb.200409058
  • • Gandalovičová, A., Rosel, D., Fernandes, M., Veselý, P., Heneberg, P., Čermák, V., … Brábek, J. (2017). Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends in Cancer, 3(6), 391–406. https://doi.org/10.1016/j.trecan.2017.04.008
  • • Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H., & Goldman, R. D. (2012). Withaferin A alters intermediate filament organization, cell shape and behavior. PLoS ONE, 7(6), 1–13. https://doi.org/10.1371/journal.pone.0039065
  • • Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., … Van Den Bosch, L. (2017). HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUSALS patients. Nature Communications, 8(1), 1–14. https://doi. org/10.1038/s41467-017-00911-y.
  • • Hazan, J., Fonknechten, N., Mavel, D., Paternotte, C., Samson, D., Artiguenave, F., … Weissenbach, J. (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genetics, 23(3), 296–303. doi: 10.1038/15472
  • • Janke, C., & Kneussel, M. (2010). Tubulin post-translational modifications: Encoding functions on the neuronal microtubule cytoskeleton. Trends in Neurosciences, 33(8), 362–372. https://doi. org/10.1016/j.tins.2010.05.001
  • • Lee, J. J., & Swain, S. M. (2008). The epothilones: Translating from the laboratory to the clinic. Clinical Cancer Research, 14(6), 1618– 1624. https://doi.org/10.1158/1078-0432.CCR-07-2201
  • • Lei, P., Ayton, S., Bush, A. I., & Adlard, P. A. (2011). GSK-3 in neurodegenerative diseases. International Journal of Alzheimer’s Disease, 2011. https://doi.org/10.4061/2011/189246
  • • Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L., & Darnell, J. (2003). Molecular Cell Biology. New York: W. H. Freeman.
  • • Nakashima, S., Matsuda, H., Kurume, A., Oda, Y., Nakamura, S., Yamashita, M., & Yoshikawa, M. (2010). Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorganic and Medicinal Chemistry Letters, 20(9), 2994–2997. https://doi.org/10.1016/j.bmcl.2010.02.062
  • • Niel, E., & Scherrmann, J. M. (2006). Colchicine today. Joint Bone Spine, 73(6), 672–678. https://doi.org/10.1016/j.jbspin.2006.03.006
  • • Overmoyer, B., Waintraub, S., Kaufman, P. A., Doyle, T., Moore, H., Modiano, M., … Demario, M. (2005). Phase II trial of KOS-862 (epothilone D) in anthracycline and taxane pretreated metastatic breast cancer. Journal of Clinical Oncology, 23(16_suppl), 778–778. doi: 10.1200/jco.2005.23.16_suppl.778
  • • Palazzo, A., Ackerman, B., & Gundersen, G. G. (2003). Tubulin acetylation and cell motility. Nature, 421(6920), 230. https://doi. org/10.1038/421230a
  • • Peterson, J. R., & Mitchison, T. J. (2002). Small molecules, big impact: A history of chemical inhibitors and the cytoskeleton. Chemistry and Biology, 9(12), 1275–1285. https://doi.org/10.1016/ S1074-5521(02)00284-3
  • • Roossien, D. H., Miller, K. E., & Gallo, G. (2015). Ciliobrevins as tools for studying dynein motor function. Frontiers in Cellular Neuroscience, 9(JULY), 1–10. https://doi.org/10.3389/fncel.2015.00252
  • • Sánchez, C., Pérez, M., & Avila, J. (2000). GSK3β-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. European Journal of Cell Biology, 79(4), 252–260. https://doi.org/10.1078/S0171-9335(04)70028-X
  • • Schofield, A. V., Steels, R., & Bernard, O. (2012). Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. Journal of Biological Chemistry, 287(52), 43620–43629. https://doi. org/10.1074/jbc.M112.394965
  • • Selenica, M. L., Jensen, H. S., Larsen, A. K., Pedersen, M. L., Helboe, L., Leist, M., & Lotharius, J. (2007). Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. British Journal of Pharmacology, 152(6), 959–979. doi: 10.1038/sj.bjp.0707471
  • • Steinmetz, M. O., & Prota, A. E. (2018). Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends in Cell Biology, 28(10), 776–792. https://doi.org/10.1016/j.tcb.2018.05.001
  • • Trivedi, N., Marsh, P., Goold, R. G., Wood-Kaczmar, A., & Gordon- Weeks, P. R. (2005). Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons. Journal of Cell Science, 118(5), 993–1005. https:// doi.org/10.1242/jcs.01697
  • • Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., & Snider, N. T. (2018). An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. Federation of American Societies for Experimental Biology Journal, 32(5), 2841–2854. https://doi.org/10.1096/fj.201700663R
  • • Xu, W., Ge, Y., Liu, Z., & Gong, R. (2015). Glycogen synthase kinase 3β orchestrates microtubule remodeling in compensatory glomerular adaptation to podocyte depletion. Journal of Biological Chemistry, 290(3), 1348–1363. https://doi.org/10.1074/jbc.M114.593830
  • • Yee, L., Lynch, T., Villalona-Calero, M., Rizvi, N., Gabrail, N., Sandler, A., … Palmer, G. (2005). A phase II study of KOS-862 (epothilone D) as second-line therapy in non-small cell lung cancer. Journal of Clinical Oncology, 23(16_suppl), 7127–7127. doi: 10.1200/ jco.2005.23.16_suppl.7127
  • • Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., & Kaibuchi, K. (2005). GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 120(1), 137–149. https://doi. org/10.1016/j.cell.2004.11.012
  • • Zemer, D., Pras, M., Sohar, E., Modan, M., Cabili, S., & Gafni, J. (1986). Colchicine in the prevention and treatment of the amyloidosis of Familial Mediterranean fever. The New England Journal of Medicine, 314, 1001-1005. doi:10.1056/NEJM198604173141601
  • • Zhang, B., Carroll, J., Trojanowski, J. Q., Yao, Y., Iba, M., Potuzak, J. S., … Brunden, K. R. (2012). The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 32(11), 3601–3611. doi: 10.1523/jneurosci.4922-11.2012
  • • Zigmond, S. H. (2000). How Wasp Regulates Actin Polymerization. The Journal of Cell Biology, 150(6). doi: 10.1083/jcb.150.6.f117
  • • Zumbrunn, J., Kinoshita, K., Hyman, A. A., & Näthke, I. S. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Current Biology, 11(1), 44–49. doi: 10.1016/s0960-9822(01)00002-1.
There are 41 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review
Authors

Pelin Zobaroğlu This is me 0000-0003-1607-9481

Gamze Bora This is me 0000-0002-4206-8332

Publication Date December 30, 2020
Submission Date March 5, 2020
Published in Issue Year 2020 Volume: 50 Issue: 3

Cite

APA Zobaroğlu, P., & Bora, G. (2020). Reshaping cytoskeleton: different acts of modulatory compounds. İstanbul Journal of Pharmacy, 50(3), 304-311.
AMA Zobaroğlu P, Bora G. Reshaping cytoskeleton: different acts of modulatory compounds. iujp. December 2020;50(3):304-311.
Chicago Zobaroğlu, Pelin, and Gamze Bora. “Reshaping Cytoskeleton: Different Acts of Modulatory Compounds”. İstanbul Journal of Pharmacy 50, no. 3 (December 2020): 304-11.
EndNote Zobaroğlu P, Bora G (December 1, 2020) Reshaping cytoskeleton: different acts of modulatory compounds. İstanbul Journal of Pharmacy 50 3 304–311.
IEEE P. Zobaroğlu and G. Bora, “Reshaping cytoskeleton: different acts of modulatory compounds”, iujp, vol. 50, no. 3, pp. 304–311, 2020.
ISNAD Zobaroğlu, Pelin - Bora, Gamze. “Reshaping Cytoskeleton: Different Acts of Modulatory Compounds”. İstanbul Journal of Pharmacy 50/3 (December 2020), 304-311.
JAMA Zobaroğlu P, Bora G. Reshaping cytoskeleton: different acts of modulatory compounds. iujp. 2020;50:304–311.
MLA Zobaroğlu, Pelin and Gamze Bora. “Reshaping Cytoskeleton: Different Acts of Modulatory Compounds”. İstanbul Journal of Pharmacy, vol. 50, no. 3, 2020, pp. 304-11.
Vancouver Zobaroğlu P, Bora G. Reshaping cytoskeleton: different acts of modulatory compounds. iujp. 2020;50(3):304-11.