Research Article
BibTex RIS Cite
Year 2020, Volume: 50 Issue: 3, 268 - 271, 30.12.2020

Abstract

References

  • • Anand, P., & Singh, B. (2013). Cite as a review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36 (4), 375–399.
  • • Banks, W.A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC Neurology, 9 (1), 1–5.
  • • Chang, T.S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10, 2440–2475.
  • • Choi, J.S., Islam, M.N., Ali, M.Y., Kim, E.J., Kim, Y.M., & Jung, H.A. (2014). Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food and Chemical Toxicology, 64, 27–33.
  • • Dajas, F., Rivera-Megret, F., Blasina, F., Arredondo, F., Abin-Carriquiry, J.A., Costa, G., Echeverry, C., Lafon, L., Heizen, H., Ferreira, M., & Morquio, A. (2003). Neuroprotection by flavonoids. Brazilian Journal of Medical and Biological Research, 36, 1613–1620.
  • • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
  • • Erdogan Orhan, I., Khan, M.T.H. (2014). Flavonoid derivatives as potent tyrosinase inhibitors - a survey of recent findings between 2008-2013. Current Topics in Medicinal Chemistry, 14(12), 1486–1493.
  • • Faria, A., Mateus, N., & Calhau, C. (2012). Flavonoid transport across blood-brain barrier: Implication for their direct neuroprotective actions. Nutrition and Aging, 1, 89–97.
  • • Grutzendler, J., & Morris, J. C. (2001). Cholinesterase inhibitors for Alzheimer’s disease. Drugs, 61(1), 41–52.
  • • He, M., Min, J. W., Kong, W. L., He, X. H., Li, J. X., & Peng, B. W. (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115, 74–85.
  • • Jung, H. A., Karki, S., Kim, J. H., & Choi, J. S. (2015). BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Archives of Pharmacal Research, 38, 1178–1187.
  • • Katalinic, M., Rusak, G., Barovic, J. D., Sinko, G., Jelic, D., Antolovic, R., & Kovarik, Z. (2010). Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, 45, 186–192.
  • • Komloova, M., Musilek, K., Horova, A., Holas, O., Dohnal, V., Gunn- Moore, F., & Kuca, K. (2011). Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors-implications for early Myasthenia gravis treatment. Bioorganic & Medicinal Chemistry Letters, 21 (8), 2505–2509.
  • • Lima, L. K. F., Pereira, S. K. S., Junior, R. S. S., Santos, F. P. S., Nascimento, A. S., Feitosa, C. M., Figuerêdo, J. S., Cavalcante, A. N., Araújo, E. C. C., & Rai, M. (2018). A brief review on the neuroprotective mechanisms of vitexin. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/4785089.
  • • Masuda, T., Yamashita, D., Takeda, Y., & Yonemori, S. (2005). Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Bioscience, Biotechnology, and Biochemistry, 69, 197–201.
  • • Meng, X.Y., Zhang, H.X., Mezei, M., & Cui, M. (2011). Molecular Docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.
  • • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology, 443, 365–382.
  • • Nordberg, A., & Svensson, A. L. (1998). Cholinesterase inhibitors in the treatment of Alzheimer’s disease A comparison of tolerability and pharmacology. Drug Safety, 19(6), 465–480.
  • • Seo, S.Y., Sharma, V. K., & Sharma, N. (2003). Mushroom tyrosinase: Recent prospects. Journal of Agricultural and Food Chemistry, 51, 2837–2853.
  • • Sheeja Malar, D., Shafreen, R. B., Karutha Pandian, S. T., & Devi, K. P. (2017). Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia -An in vitro and in silico study. Pharmaceutical Biology, 55(1), 381–393.
  • • Spandana, K. M. A., Bhaskaran, M., Karri, V. V.S. N. R., & Natarajan, J. (2020). A comprehensive review of nano drug delivery system in the treatment of CNS disorders. The Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2020.101628.
  • • Ye, Y., Chou, G. X., Wang, H., Chu, J. H., & Yu, Z. L. (2010). Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine, 18, 32–35.
  • • Zhou, X., Wang, F., Zhou, R., Song, X., & Xie, M. (2017). Apigenin: A current review on its beneficial biological activities. Journal of Food Biochemistry, 41, e12376.
  • • Zolghadri, S., Bahrami, A., Khan, M. T. H., Munoz-Munoz, J., Garcia- Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34 (1), 279–309.

Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin

Year 2020, Volume: 50 Issue: 3, 268 - 271, 30.12.2020

Abstract

Background and Aims: Apigenin and viteksin are two phytochemical compounds in flavone structure. In this study, tyrosinase and cholinesterase inhibitory effects of apigenin and vitexin were tested. Then, molecular docking studies were conducted on these molecules. Methods: Cholinesterase inhibition was evaluated by minor modifications of Ellman’s method and tyrosinase inhibition was evaluated by minor modifications of Masuda’s method. Docking simulations were performed using the Schrödinger software suite. Results: When apigenin and vitexin were compared, apigenin showed higher inhibitory effect against butyrylcholinesterase (54±1.7%) and tyrosinase (49.36±0.24%), vitexin showed a higher inhibitory effect against acetylcholinesterase (66±1.6%). Conclusion: When molecular interactions between tested compounds and inhibited enzymes were examined, it was observed that there were interactions especially between enzyme structures and benzopyran rings of these compounds and hydroxyl groups bound to these rings.

References

  • • Anand, P., & Singh, B. (2013). Cite as a review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36 (4), 375–399.
  • • Banks, W.A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC Neurology, 9 (1), 1–5.
  • • Chang, T.S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10, 2440–2475.
  • • Choi, J.S., Islam, M.N., Ali, M.Y., Kim, E.J., Kim, Y.M., & Jung, H.A. (2014). Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food and Chemical Toxicology, 64, 27–33.
  • • Dajas, F., Rivera-Megret, F., Blasina, F., Arredondo, F., Abin-Carriquiry, J.A., Costa, G., Echeverry, C., Lafon, L., Heizen, H., Ferreira, M., & Morquio, A. (2003). Neuroprotection by flavonoids. Brazilian Journal of Medical and Biological Research, 36, 1613–1620.
  • • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
  • • Erdogan Orhan, I., Khan, M.T.H. (2014). Flavonoid derivatives as potent tyrosinase inhibitors - a survey of recent findings between 2008-2013. Current Topics in Medicinal Chemistry, 14(12), 1486–1493.
  • • Faria, A., Mateus, N., & Calhau, C. (2012). Flavonoid transport across blood-brain barrier: Implication for their direct neuroprotective actions. Nutrition and Aging, 1, 89–97.
  • • Grutzendler, J., & Morris, J. C. (2001). Cholinesterase inhibitors for Alzheimer’s disease. Drugs, 61(1), 41–52.
  • • He, M., Min, J. W., Kong, W. L., He, X. H., Li, J. X., & Peng, B. W. (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115, 74–85.
  • • Jung, H. A., Karki, S., Kim, J. H., & Choi, J. S. (2015). BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Archives of Pharmacal Research, 38, 1178–1187.
  • • Katalinic, M., Rusak, G., Barovic, J. D., Sinko, G., Jelic, D., Antolovic, R., & Kovarik, Z. (2010). Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, 45, 186–192.
  • • Komloova, M., Musilek, K., Horova, A., Holas, O., Dohnal, V., Gunn- Moore, F., & Kuca, K. (2011). Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors-implications for early Myasthenia gravis treatment. Bioorganic & Medicinal Chemistry Letters, 21 (8), 2505–2509.
  • • Lima, L. K. F., Pereira, S. K. S., Junior, R. S. S., Santos, F. P. S., Nascimento, A. S., Feitosa, C. M., Figuerêdo, J. S., Cavalcante, A. N., Araújo, E. C. C., & Rai, M. (2018). A brief review on the neuroprotective mechanisms of vitexin. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/4785089.
  • • Masuda, T., Yamashita, D., Takeda, Y., & Yonemori, S. (2005). Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Bioscience, Biotechnology, and Biochemistry, 69, 197–201.
  • • Meng, X.Y., Zhang, H.X., Mezei, M., & Cui, M. (2011). Molecular Docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.
  • • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology, 443, 365–382.
  • • Nordberg, A., & Svensson, A. L. (1998). Cholinesterase inhibitors in the treatment of Alzheimer’s disease A comparison of tolerability and pharmacology. Drug Safety, 19(6), 465–480.
  • • Seo, S.Y., Sharma, V. K., & Sharma, N. (2003). Mushroom tyrosinase: Recent prospects. Journal of Agricultural and Food Chemistry, 51, 2837–2853.
  • • Sheeja Malar, D., Shafreen, R. B., Karutha Pandian, S. T., & Devi, K. P. (2017). Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia -An in vitro and in silico study. Pharmaceutical Biology, 55(1), 381–393.
  • • Spandana, K. M. A., Bhaskaran, M., Karri, V. V.S. N. R., & Natarajan, J. (2020). A comprehensive review of nano drug delivery system in the treatment of CNS disorders. The Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2020.101628.
  • • Ye, Y., Chou, G. X., Wang, H., Chu, J. H., & Yu, Z. L. (2010). Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine, 18, 32–35.
  • • Zhou, X., Wang, F., Zhou, R., Song, X., & Xie, M. (2017). Apigenin: A current review on its beneficial biological activities. Journal of Food Biochemistry, 41, e12376.
  • • Zolghadri, S., Bahrami, A., Khan, M. T. H., Munoz-Munoz, J., Garcia- Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34 (1), 279–309.
There are 24 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Health Care Administration
Journal Section Original Article
Authors

Esen Sezen Karaoğlan This is me 0000-0002-9098-9021

Mehmet Koca This is me 0000-0002-1517-5925

Publication Date December 30, 2020
Submission Date January 16, 2020
Published in Issue Year 2020 Volume: 50 Issue: 3

Cite

APA Karaoğlan, E. S., & Koca, M. (2020). Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin. İstanbul Journal of Pharmacy, 50(3), 268-271.
AMA Karaoğlan ES, Koca M. Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin. iujp. December 2020;50(3):268-271.
Chicago Karaoğlan, Esen Sezen, and Mehmet Koca. “Tyrosinase and Cholinesterase Inhibitory Activities and Molecular Docking Studies on Apigenin and Vitexin”. İstanbul Journal of Pharmacy 50, no. 3 (December 2020): 268-71.
EndNote Karaoğlan ES, Koca M (December 1, 2020) Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin. İstanbul Journal of Pharmacy 50 3 268–271.
IEEE E. S. Karaoğlan and M. Koca, “Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin”, iujp, vol. 50, no. 3, pp. 268–271, 2020.
ISNAD Karaoğlan, Esen Sezen - Koca, Mehmet. “Tyrosinase and Cholinesterase Inhibitory Activities and Molecular Docking Studies on Apigenin and Vitexin”. İstanbul Journal of Pharmacy 50/3 (December 2020), 268-271.
JAMA Karaoğlan ES, Koca M. Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin. iujp. 2020;50:268–271.
MLA Karaoğlan, Esen Sezen and Mehmet Koca. “Tyrosinase and Cholinesterase Inhibitory Activities and Molecular Docking Studies on Apigenin and Vitexin”. İstanbul Journal of Pharmacy, vol. 50, no. 3, 2020, pp. 268-71.
Vancouver Karaoğlan ES, Koca M. Tyrosinase and cholinesterase inhibitory activities and molecular docking studies on apigenin and vitexin. iujp. 2020;50(3):268-71.