Research Article
BibTex RIS Cite
Year 2019, Volume: 49 Issue: 3, 173 - 179, 01.12.2019

Abstract

References

  • Abudayyak M, Öztaş E, Arici M, Özhan G (2017). Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere 169, 117-123. Abudayyak M, Guzel EE, Özhan G (2017b). Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int 108, 7-14. Afanas’ev I (2011). Reactive oxygen species signalling in cancer: comparison with aging. Aging Dis 2(3), 219. Ahamed M, Akhtar MJ, Khan MAM, Alrokayan SA, Alhadlaq HA (2019) Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere 216, 823-831. Akbarzadeh F, Khoshgard K, Hosseinzadeh L, Arkan E, Rezazadeh D (2018) Investigating the Cytotoxicity of Folate-Conjugated Bismuth Oxide Nanoparticles on KB and A549 Cell Lines. Adv Pharm Bull 8(4), 627-635. Arora S, Rajwade J M, & Paknikar K M (2012). Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2), 151-165. Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2), 248-254. Bogusza K, Teheib M, Cardilloa D, Lerchb M, Rosenfeldb A, Doua SX, Liua HK, Konstantino K (2018) High toxicity of Bi(OH)3 and α-Bi2O3 nanoparticles towards malignant 9L and MCF-7 cells. Mater Sci Eng C 93, 958–967. Chen 1 J, Zhu 1J, Cho, H H, Cui K, Li F, Zhou, Rogers JT, Wong SCT, & Huang X (2008). Differential cytotoxicity of metal oxide nanoparticles. J Exp Nanosci 3(4), 321-328. Chandra J, Samali A, & Orrenius S (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29(3-4), 323-333. Choi AO, Cho SJ, Desbarats J, Lovrić J, & Maysinger D (2007). Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5(1), 1. Cornélio ALG, Salles LP, da Paz MC, Cirelli JA, Guerreiro-Tanomaru JM, & Tanomaru Filho M (2011). Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study. J Endod 37(2), 203-210. Dhawan A, & Sharma V (2010). Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2), 589-605. Elsaesser A, & Howard CV (2012). Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2), 129-137. EPA, U.S. (2007). EPA Nanotechnology White Paper. U.S. Environmental Protection Agency, Washington, USA. Eruslanov E, Kusmartsev S (2010). Identification of ROS using oxidized DCFDA and flow-cytometry. In: Advanced protocols in oxidative stress II. Armstrong, Donald (Ed.) 57-72. Fotakis G, Timbrell JA (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2), 171-177. Geyikoglu F, Turkez H (2005). Genotoxicity and oxidative stress induced by some bismuth compounds in human blood cells in vitro. Fresenius Environ Bul 14, 854e860. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdörster G (2011). Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 287(1), 99-104. Hernandez-Delgadillo, R., Velasco-Arias, D., Martinez-Sanmiguel, J. J., Diaz, D., Zumeta-Dube, I., Arevalo-Niño K, & Cabral-Romero C (2013). Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine 8, 1645. Hyodo T, Kanazawa E, Takao Y, Shimizu Y, & Egashira M (2000). H-2 sensing properties and mechanism of Nb2O5-Bi2O3 varistor-type gas sensors. Electrochemistry 68(1), 24-31. Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013). The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14(8), 16732-16801. Kim YJ, Yu M, Park HO, & Yang SI (2010). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 6(4), 336-343. Liman R (2013). Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay. Chemosphere 93(2), 269-273. Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012). Assessing nanoparticle toxicity. Annu Rev Anal Chem 5, 181-205. Marklov, E (2007). Inflammation and genes. Acta Medica-Hradec Kralove 50(1), 17. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone, V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006). Safe handling of nanotechnology. Nature 444(7117), 267-269. Mnyusiwalla A, Daar AS, Singer PA (2003). ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14(3), R9. Monteiller C, Tran L, MacNee W, Faux SP, Jones AD, Miller BG, Donaldson K (2007). The pro-inflammatory effects of low solubility low toxicity particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup Environ Med 64, 609-615. Niwa Y, Hiura Y, Sawamura H, Iwai N (2008). Inhalation exposure to carbon black induces inflammatory response in rats. Circulation 72(1), 144-149. Oztas E, Abudayyak M, Celiksoz M, Özhan G. (2019). Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol in Vitro, 55, 101-107. Park EJ, Park K (2009). Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184(1), 18-25. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006). An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2), 118. Rao KMK, Porter DW, Meighan T, Castranova V (2004). The sources of inflammatory mediators in the lung after silica exposure. Environ Health Perspec 112(17), 1679. Ray PC, Yu H, Fu PP (2009). Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1), 1-35. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010). Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5), 544-568. Seabra AB, Durán N (2015). Nanotoxicology of metal oxide nanoparticles. Metals 5(2), 934-975. Shishodia S, Aggarwal BB (2002). Nuclear factor-κB activation: a question of life or death. BMB Rep 35(1), 28-40. Sorg O (2004). Oxidative stress: a theoretical model or a biological reality?. C R Biol 327(7), 649-662. Song Q, Liu Y, Jiang Z, Tang M, Li N, Wei F, Cheng G (2014) The acute cytotoxicity of bismuth ferrite nanoparticles on PC12 cells. J Nanopart Res 16: 2408. Taufik S, Yusof NA, Tee TW, Ramli I (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. Int J Electrochem Sci 6, 1880-1891. Thomas F, Bialek B, Hensel R (2011). Medical use of bismuth: the two sides of the coin. J Clin Toxicol S, 3, 2161-0495. Van Meerloo J, Kaspers GJ, Cloos J (2011). Cell sensitivity assays: the MTT assay. Methods Mol Biol 237-245. Vance M E, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr, MF, Rejeski D, Hull MS (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotech 6, 1769. Xie HR, Hu LS, Li GY (2010). SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med J 123(8), 1086-1092.

Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line

Year 2019, Volume: 49 Issue: 3, 173 - 179, 01.12.2019

Abstract

DOI: 10.26650/IstanbulJPharm.2019.19020

Bismuth (III) oxide nanoparticles’ (Bi2O3-NPs) unique physicochemical properties attracted the attention in biological, industrial, technological and medical fields. Concurrently, increasing numbers of studies revealing their potential toxic effects and possible toxicity mechanisms are ongoing. In this study, we assessed the toxic potentials of Bi2O3-NPs in human SH-SY5Y neuroblastoma cell line. After Bi2O3-NPs characterization using TEM, the cytotoxic potentials were evaluated by MTT and LDH assays. The induction of reactive oxygen species production was evaluated by H2DCFDA. In order to evaluate the oxidative damages, the changes in antioxidant catalase and superoxide dismutase and glutathione levels were determined. The cellular death pathway and the role of immune response were studied by measuring the mRNA expression levels of related genes. Our results showed that Bi2O3-NPs decreased the cell viability through disruption on mitochondrial activity (IC50:77.57 μg/mL) and membrane integrity (LDH%50:16.97 μg/mL). At 50 μg/mL Bi2O3-NPs, the production of reactive oxygen species (ROS) was induced significantly as well as the catalase and superoxide dismutase levels. In immune response, the mRNA expression levels of interleukin (IL)-6 were increased more than 1.5-fold in all doses; whereas, TNF-α, NF-ĸB and MAPK8 expressions were remained unchanged. Consequently, Bi2O3-NPs induced oxidative stress-related inflammation via activation of pro-inflammatory cytokine, IL-6.

You may cite this article as: Öztaş E, Abudayyak M, Aykanat B, Can Z, Baram E, Özhan G (2019). Bismuth Oxide Nanoparticles Induced Oxidative Stress-Related Inflammation in SH-SY5Y Cell Line. Istanbul J Pharm 10.26650/IstanbulJPharm.2019.19020.

References

  • Abudayyak M, Öztaş E, Arici M, Özhan G (2017). Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere 169, 117-123. Abudayyak M, Guzel EE, Özhan G (2017b). Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int 108, 7-14. Afanas’ev I (2011). Reactive oxygen species signalling in cancer: comparison with aging. Aging Dis 2(3), 219. Ahamed M, Akhtar MJ, Khan MAM, Alrokayan SA, Alhadlaq HA (2019) Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere 216, 823-831. Akbarzadeh F, Khoshgard K, Hosseinzadeh L, Arkan E, Rezazadeh D (2018) Investigating the Cytotoxicity of Folate-Conjugated Bismuth Oxide Nanoparticles on KB and A549 Cell Lines. Adv Pharm Bull 8(4), 627-635. Arora S, Rajwade J M, & Paknikar K M (2012). Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2), 151-165. Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2), 248-254. Bogusza K, Teheib M, Cardilloa D, Lerchb M, Rosenfeldb A, Doua SX, Liua HK, Konstantino K (2018) High toxicity of Bi(OH)3 and α-Bi2O3 nanoparticles towards malignant 9L and MCF-7 cells. Mater Sci Eng C 93, 958–967. Chen 1 J, Zhu 1J, Cho, H H, Cui K, Li F, Zhou, Rogers JT, Wong SCT, & Huang X (2008). Differential cytotoxicity of metal oxide nanoparticles. J Exp Nanosci 3(4), 321-328. Chandra J, Samali A, & Orrenius S (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29(3-4), 323-333. Choi AO, Cho SJ, Desbarats J, Lovrić J, & Maysinger D (2007). Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5(1), 1. Cornélio ALG, Salles LP, da Paz MC, Cirelli JA, Guerreiro-Tanomaru JM, & Tanomaru Filho M (2011). Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study. J Endod 37(2), 203-210. Dhawan A, & Sharma V (2010). Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2), 589-605. Elsaesser A, & Howard CV (2012). Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2), 129-137. EPA, U.S. (2007). EPA Nanotechnology White Paper. U.S. Environmental Protection Agency, Washington, USA. Eruslanov E, Kusmartsev S (2010). Identification of ROS using oxidized DCFDA and flow-cytometry. In: Advanced protocols in oxidative stress II. Armstrong, Donald (Ed.) 57-72. Fotakis G, Timbrell JA (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2), 171-177. Geyikoglu F, Turkez H (2005). Genotoxicity and oxidative stress induced by some bismuth compounds in human blood cells in vitro. Fresenius Environ Bul 14, 854e860. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdörster G (2011). Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 287(1), 99-104. Hernandez-Delgadillo, R., Velasco-Arias, D., Martinez-Sanmiguel, J. J., Diaz, D., Zumeta-Dube, I., Arevalo-Niño K, & Cabral-Romero C (2013). Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine 8, 1645. Hyodo T, Kanazawa E, Takao Y, Shimizu Y, & Egashira M (2000). H-2 sensing properties and mechanism of Nb2O5-Bi2O3 varistor-type gas sensors. Electrochemistry 68(1), 24-31. Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013). The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14(8), 16732-16801. Kim YJ, Yu M, Park HO, & Yang SI (2010). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 6(4), 336-343. Liman R (2013). Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay. Chemosphere 93(2), 269-273. Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012). Assessing nanoparticle toxicity. Annu Rev Anal Chem 5, 181-205. Marklov, E (2007). Inflammation and genes. Acta Medica-Hradec Kralove 50(1), 17. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone, V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006). Safe handling of nanotechnology. Nature 444(7117), 267-269. Mnyusiwalla A, Daar AS, Singer PA (2003). ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14(3), R9. Monteiller C, Tran L, MacNee W, Faux SP, Jones AD, Miller BG, Donaldson K (2007). The pro-inflammatory effects of low solubility low toxicity particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup Environ Med 64, 609-615. Niwa Y, Hiura Y, Sawamura H, Iwai N (2008). Inhalation exposure to carbon black induces inflammatory response in rats. Circulation 72(1), 144-149. Oztas E, Abudayyak M, Celiksoz M, Özhan G. (2019). Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol in Vitro, 55, 101-107. Park EJ, Park K (2009). Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184(1), 18-25. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006). An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2), 118. Rao KMK, Porter DW, Meighan T, Castranova V (2004). The sources of inflammatory mediators in the lung after silica exposure. Environ Health Perspec 112(17), 1679. Ray PC, Yu H, Fu PP (2009). Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1), 1-35. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010). Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5), 544-568. Seabra AB, Durán N (2015). Nanotoxicology of metal oxide nanoparticles. Metals 5(2), 934-975. Shishodia S, Aggarwal BB (2002). Nuclear factor-κB activation: a question of life or death. BMB Rep 35(1), 28-40. Sorg O (2004). Oxidative stress: a theoretical model or a biological reality?. C R Biol 327(7), 649-662. Song Q, Liu Y, Jiang Z, Tang M, Li N, Wei F, Cheng G (2014) The acute cytotoxicity of bismuth ferrite nanoparticles on PC12 cells. J Nanopart Res 16: 2408. Taufik S, Yusof NA, Tee TW, Ramli I (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. Int J Electrochem Sci 6, 1880-1891. Thomas F, Bialek B, Hensel R (2011). Medical use of bismuth: the two sides of the coin. J Clin Toxicol S, 3, 2161-0495. Van Meerloo J, Kaspers GJ, Cloos J (2011). Cell sensitivity assays: the MTT assay. Methods Mol Biol 237-245. Vance M E, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr, MF, Rejeski D, Hull MS (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotech 6, 1769. Xie HR, Hu LS, Li GY (2010). SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med J 123(8), 1086-1092.
There are 1 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Ezgi Oztas This is me

Mahmoud Abudayyak

Beyza Aykanat This is me

Zubeyde Can This is me

Enes Baram This is me

Gul Ozhan This is me

Publication Date December 1, 2019
Submission Date October 3, 2019
Published in Issue Year 2019 Volume: 49 Issue: 3

Cite

APA Oztas, E., Abudayyak, M., Aykanat, B., Can, Z., et al. (2019). Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line. İstanbul Journal of Pharmacy, 49(3), 173-179.
AMA Oztas E, Abudayyak M, Aykanat B, Can Z, Baram E, Ozhan G. Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line. iujp. December 2019;49(3):173-179.
Chicago Oztas, Ezgi, Mahmoud Abudayyak, Beyza Aykanat, Zubeyde Can, Enes Baram, and Gul Ozhan. “Bismuth Oxide Nanoparticles Induced Oxidative Stress-Related Inflammation in SH-SY5Y Cell Line”. İstanbul Journal of Pharmacy 49, no. 3 (December 2019): 173-79.
EndNote Oztas E, Abudayyak M, Aykanat B, Can Z, Baram E, Ozhan G (December 1, 2019) Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line. İstanbul Journal of Pharmacy 49 3 173–179.
IEEE E. Oztas, M. Abudayyak, B. Aykanat, Z. Can, E. Baram, and G. Ozhan, “Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line”, iujp, vol. 49, no. 3, pp. 173–179, 2019.
ISNAD Oztas, Ezgi et al. “Bismuth Oxide Nanoparticles Induced Oxidative Stress-Related Inflammation in SH-SY5Y Cell Line”. İstanbul Journal of Pharmacy 49/3 (December 2019), 173-179.
JAMA Oztas E, Abudayyak M, Aykanat B, Can Z, Baram E, Ozhan G. Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line. iujp. 2019;49:173–179.
MLA Oztas, Ezgi et al. “Bismuth Oxide Nanoparticles Induced Oxidative Stress-Related Inflammation in SH-SY5Y Cell Line”. İstanbul Journal of Pharmacy, vol. 49, no. 3, 2019, pp. 173-9.
Vancouver Oztas E, Abudayyak M, Aykanat B, Can Z, Baram E, Ozhan G. Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line. iujp. 2019;49(3):173-9.