Acharya, S., & Sahoo, S. K. (2011). PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews, 63(3), 170-183. doi:https://doi.org/10.1016/j.addr.2010.10.008
Collnot, E. M., Baldes, C., Schaefer, U. F., Edgar, K. J., Wempe, M. F., & Lehr, C. M. (2010). Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm, 7(3), 642-651. doi:10.1021/mp900191s
Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Preat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release, 161(2), 505-522. doi:10.1016/j.jconrel.2012.01.043
Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H., & Atyabi, F. (2011). Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine, 6, 877-895. doi:10.2147/ijn.s18905
Gaonkar, R. H., Ganguly, S., Dewanjee, S., Sinha, S., Gupta, A., Ganguly, S., . . . Chatterjee Debnath, M. (2017). Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Scientific Reports, 7(1), 530. doi:10.1038/s41598-017-00696-6
Hillaireau, H., & Couvreur, P. (2009). Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci, 66(17), 2873-2896. doi:10.1007/s00018-009-0053-z
Jin, H., Wang, Z., Liu, L., Gao, L., Sun, L., Li, X., . . . Fan, D. (2010). R-flurbiprofen reverses multidrug resistance, proliferation and metastasis in gastric cancer cells by p75(NTR) induction. Mol Pharm, 7(1), 156-168. doi:10.1021/mp900189x
Jin, H., Wang, Z., Liu, L., Gao, L., Sun, L., Li, X., . . . Fan, D. (2010). R-Flurbiprofen Reverses Multidrug Resistance, Proliferation and Metastasis in Gastric Cancer Cells by p75NTR Induction. Molecular Pharmaceutics, 7(1), 156-168. doi:10.1021/mp900189x
Kozlu, S., Sahin, A., Ultav, G., Yerlikaya, F., Calis, S., & Capan, Y. (2018). Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. Journal of Drug Delivery Science and Technology, 45, 213-219. doi:https://doi.org/10.1016/j.jddst.2018.02.004
Liu, J. K., Patel, S. K., Gillespie, D. L., Whang, K., & Couldwell, W. T. (2012). R-flurbiprofen, a novel nonsteroidal anti-inflammatory drug, decreases cell proliferation and induces apoptosis in pituitary adenoma cells in vitro. J Neurooncol, 106(3), 561-569. doi:10.1007/s11060-011-0712-4
Ma, P., & Mumper, R. J. (2013). Paclitaxel Nano-Delivery Systems: A Comprehensive Review. J Nanomed Nanotechnol, 4(2), 1000164. doi:10.4172/2157-7439.1000164
Malvern. Zeta Potential An Introduction in 30 Minutes Retrieved from https://www.materials-talks.com/wp-content/uploads/2017/09/mrk654-01_an_introduction_to_zeta_potential_v3.pdf
Ostolska, I., & Wiśniewska, M. (2014). Application of the zeta potential measurements to explanation of colloidal Cr(2)O(3) stability mechanism in the presence of the ionic polyamino acids. Colloid and polymer science, 292(10), 2453-2464. doi:10.1007/s00396-014-3276-y
Qi, S. S., Sun, J. H., Yu, H. H., & Yu, S. Q. (2017). Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv, 24(1), 1909-1926. doi:10.1080/10717544.2017.1410256.
Rahman, Z., Zidan, A. S., Habib, M. J., & Khan, M. A. (2010a). Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett-Burman design. International Journal of Pharmaceutics, 389(1-2), 186-194. doi:10.1016/j.ijpharm.2009.12.040
Rahman, Z., Zidan, A. S., Habib, M. J., & Khan, M. A. (2010b). Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. International Journal of Pharmaceutics, 389(1–2), 186-194. doi:http://dx.doi.org/10.1016/j.ijpharm.2009.12.040
Saadati, R., & Dadashzadeh, S. (2014). Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Int J Pharm, 464(1-2), 135-144. doi:10.1016/j.ijpharm.2014.01.014
Sahin, A., Esendagli, G., Yerlikaya, F., Caban-Toktas, S., Yoyen-Ermis, D., Horzum, U., . . . Capan, Y. (2017). A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles' characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol, 45(8), 1657-1664. doi:10.1080/21691401.2016.1276924
Sahin, A., Esendagli, G., Yerlikaya, F., Caban-Toktas, S., Yoyen-Ermis, D., Horzum, U., . . . Capan, Y. (2017). A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1657-1664. doi:10.1080/21691401.2016.1276924
Sahin, A., Spiroux, F., Guedon, I., Arslan, F. B., Sarcan, E. T., Ozkan, T., . . . Capan, Y. (2017). Using PVA and TPGS as combined emulsifier in nanoprecipitation method improves characteristics and anticancer activity of ibuprofen loaded PLGA nanoparticles. Pharmazie, 72(9), 525-528. doi:10.1691/ph.2017.7015
Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 94(4), 252-266. doi:10.1093/jnci/94.4.252
Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal Anti-inflammatory Drugs as Anticancer Agents: Mechanistic, Pharmacologic, and Clinical Issues. Journal of the National Cancer Institute, 94(4), 252-266. doi:10.1093/jnci/94.4.252
Warsi, M. H., Anwar, M., Garg, V., Jain, G. K., Talegaonkar, S., Ahmad, F. J., & Khar, R. K. (2014). Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids and Surfaces B: Biointerfaces, 122, 423-431. doi:https://doi.org/10.1016/j.colsurfb.2014.07.004
Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release, 200, 138-157. doi:10.1016/j.jconrel.2014.12.030
Win, K. Y., & Feng, S.-S. (2006). In vitro and in vivo studies on vitamin E TPGS-emulsified poly(d,l-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials, 27(10), 2285-2291. doi:https://doi.org/10.1016/j.biomaterials.2005.11.008
Yang, C., Wu, T., Qi, Y., & Zhang, Z. (2018). Recent Advances in the Application of Vitamin E TPGS for Drug Delivery. Theranostics, 8(2), 464-485. doi:10.7150/thno.22711
Yerlikaya, F., Ozgen, A., Vural, I., Guven, O., Karaagaoglu, E., Khan, M. A., & Capan, Y. (2013). Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci, 102(10), 3748-3761. doi:10.1002/jps.23686
Yerlikaya, F., Ozgen, A., Vural, I., Guven, O., Karaagaoglu, E., Khan, M. A., & Capan, Y. (2013). Development and Evaluation of Paclitaxel Nanoparticles Using a Quality-by-Design Approach.
Journal of Pharmaceutical Sciences, 102(10), 3748-3761. doi:https://doi.org/10.1002/jps.23686
Yu, L. X., Amidon, G., Khan, M. A., Hoag, S. W., Polli, J., Raju, G. K., & Woodcock, J. (2014). Understanding pharmaceutical quality by design. The AAPS journal, 16(4), 771-783. doi:10.1208/s12248-014-9598-3
Zhang, Z., Tan, S., & Feng, S.-S. (2012). Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 33(19), 4889-4906. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.03.046
Zhu, H., Chen, H., Zeng, X., Wang, Z., Zhang, X., Wu, Y., . . . Feng, S.-S. (2014). Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 35(7), 2391-2400. doi:https://doi.org/10.1016/j.biomaterials.2013.11.086
Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design
Year 2019,
Volume: 49 Issue: 3, 161 - 166, 01.12.2019
Nano drug co-delivery system is a popular strategy for combined application of two or more anticancer and/or synergistic drugs. Synergistic effects of nonsteroidal anti-inflammatory drugs and anti-cancer drugs in cancer treatment are shown in the literature. In this study, it was aimed to screen and understand critical formulation and process parameters inthe preparationflurbiprofen and paclitaxel co-loaded nanoparticles for developing an anti-cancer nano co-delivery system. With this aim, critical parameters were determined using Plackett–Burman experimental design (DoE). Flurbiprofen and paclitaxel drug loading amounts were considered as critical quality attributes to controleffective drug loading ratio. Furthermore, average particle size and zeta potential were also defined as critical quality attributes in order to optimize passive drug targeting and colloidal stability. Surfactant type was determined as the most significant factors for the average particle size and zeta potential. For flurbiprofen and paclitaxel drug loading into the nanoparticles, amounts of both flurbiprofen and paclitaxel were determined as critical factors. Consequently, paclitaxel and flurbiprofen were efficiently loaded into nanoparticles and the impact of the formulation variables were successfully screened by a DoE. By controlling the determined parameters, therapeutic efficacy of co-loaded drug nanoparticles could be maximized in further studies.
You may cite this article as: Şahin A, Çaban-Toktaş S, Tonbul H, Yerlikaya F, Aktaş Y, Çapan Y (2019). Development of Paclitaxel and Flurbiprofen Co-Loaded PLGA Nanoparticles: Understanding Critical Formulation and Process Parameters Using Plackett–Burman Design. Istanbul J Pharm 10.26650/IstanbulJPharm.2019.19036.
Acharya, S., & Sahoo, S. K. (2011). PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews, 63(3), 170-183. doi:https://doi.org/10.1016/j.addr.2010.10.008
Collnot, E. M., Baldes, C., Schaefer, U. F., Edgar, K. J., Wempe, M. F., & Lehr, C. M. (2010). Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm, 7(3), 642-651. doi:10.1021/mp900191s
Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Preat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release, 161(2), 505-522. doi:10.1016/j.jconrel.2012.01.043
Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H., & Atyabi, F. (2011). Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine, 6, 877-895. doi:10.2147/ijn.s18905
Gaonkar, R. H., Ganguly, S., Dewanjee, S., Sinha, S., Gupta, A., Ganguly, S., . . . Chatterjee Debnath, M. (2017). Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Scientific Reports, 7(1), 530. doi:10.1038/s41598-017-00696-6
Hillaireau, H., & Couvreur, P. (2009). Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci, 66(17), 2873-2896. doi:10.1007/s00018-009-0053-z
Jin, H., Wang, Z., Liu, L., Gao, L., Sun, L., Li, X., . . . Fan, D. (2010). R-flurbiprofen reverses multidrug resistance, proliferation and metastasis in gastric cancer cells by p75(NTR) induction. Mol Pharm, 7(1), 156-168. doi:10.1021/mp900189x
Jin, H., Wang, Z., Liu, L., Gao, L., Sun, L., Li, X., . . . Fan, D. (2010). R-Flurbiprofen Reverses Multidrug Resistance, Proliferation and Metastasis in Gastric Cancer Cells by p75NTR Induction. Molecular Pharmaceutics, 7(1), 156-168. doi:10.1021/mp900189x
Kozlu, S., Sahin, A., Ultav, G., Yerlikaya, F., Calis, S., & Capan, Y. (2018). Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. Journal of Drug Delivery Science and Technology, 45, 213-219. doi:https://doi.org/10.1016/j.jddst.2018.02.004
Liu, J. K., Patel, S. K., Gillespie, D. L., Whang, K., & Couldwell, W. T. (2012). R-flurbiprofen, a novel nonsteroidal anti-inflammatory drug, decreases cell proliferation and induces apoptosis in pituitary adenoma cells in vitro. J Neurooncol, 106(3), 561-569. doi:10.1007/s11060-011-0712-4
Ma, P., & Mumper, R. J. (2013). Paclitaxel Nano-Delivery Systems: A Comprehensive Review. J Nanomed Nanotechnol, 4(2), 1000164. doi:10.4172/2157-7439.1000164
Malvern. Zeta Potential An Introduction in 30 Minutes Retrieved from https://www.materials-talks.com/wp-content/uploads/2017/09/mrk654-01_an_introduction_to_zeta_potential_v3.pdf
Ostolska, I., & Wiśniewska, M. (2014). Application of the zeta potential measurements to explanation of colloidal Cr(2)O(3) stability mechanism in the presence of the ionic polyamino acids. Colloid and polymer science, 292(10), 2453-2464. doi:10.1007/s00396-014-3276-y
Qi, S. S., Sun, J. H., Yu, H. H., & Yu, S. Q. (2017). Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv, 24(1), 1909-1926. doi:10.1080/10717544.2017.1410256.
Rahman, Z., Zidan, A. S., Habib, M. J., & Khan, M. A. (2010a). Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett-Burman design. International Journal of Pharmaceutics, 389(1-2), 186-194. doi:10.1016/j.ijpharm.2009.12.040
Rahman, Z., Zidan, A. S., Habib, M. J., & Khan, M. A. (2010b). Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. International Journal of Pharmaceutics, 389(1–2), 186-194. doi:http://dx.doi.org/10.1016/j.ijpharm.2009.12.040
Saadati, R., & Dadashzadeh, S. (2014). Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Int J Pharm, 464(1-2), 135-144. doi:10.1016/j.ijpharm.2014.01.014
Sahin, A., Esendagli, G., Yerlikaya, F., Caban-Toktas, S., Yoyen-Ermis, D., Horzum, U., . . . Capan, Y. (2017). A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles' characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol, 45(8), 1657-1664. doi:10.1080/21691401.2016.1276924
Sahin, A., Esendagli, G., Yerlikaya, F., Caban-Toktas, S., Yoyen-Ermis, D., Horzum, U., . . . Capan, Y. (2017). A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1657-1664. doi:10.1080/21691401.2016.1276924
Sahin, A., Spiroux, F., Guedon, I., Arslan, F. B., Sarcan, E. T., Ozkan, T., . . . Capan, Y. (2017). Using PVA and TPGS as combined emulsifier in nanoprecipitation method improves characteristics and anticancer activity of ibuprofen loaded PLGA nanoparticles. Pharmazie, 72(9), 525-528. doi:10.1691/ph.2017.7015
Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 94(4), 252-266. doi:10.1093/jnci/94.4.252
Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal Anti-inflammatory Drugs as Anticancer Agents: Mechanistic, Pharmacologic, and Clinical Issues. Journal of the National Cancer Institute, 94(4), 252-266. doi:10.1093/jnci/94.4.252
Warsi, M. H., Anwar, M., Garg, V., Jain, G. K., Talegaonkar, S., Ahmad, F. J., & Khar, R. K. (2014). Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids and Surfaces B: Biointerfaces, 122, 423-431. doi:https://doi.org/10.1016/j.colsurfb.2014.07.004
Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release, 200, 138-157. doi:10.1016/j.jconrel.2014.12.030
Win, K. Y., & Feng, S.-S. (2006). In vitro and in vivo studies on vitamin E TPGS-emulsified poly(d,l-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials, 27(10), 2285-2291. doi:https://doi.org/10.1016/j.biomaterials.2005.11.008
Yang, C., Wu, T., Qi, Y., & Zhang, Z. (2018). Recent Advances in the Application of Vitamin E TPGS for Drug Delivery. Theranostics, 8(2), 464-485. doi:10.7150/thno.22711
Yerlikaya, F., Ozgen, A., Vural, I., Guven, O., Karaagaoglu, E., Khan, M. A., & Capan, Y. (2013). Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci, 102(10), 3748-3761. doi:10.1002/jps.23686
Yerlikaya, F., Ozgen, A., Vural, I., Guven, O., Karaagaoglu, E., Khan, M. A., & Capan, Y. (2013). Development and Evaluation of Paclitaxel Nanoparticles Using a Quality-by-Design Approach.
Journal of Pharmaceutical Sciences, 102(10), 3748-3761. doi:https://doi.org/10.1002/jps.23686
Yu, L. X., Amidon, G., Khan, M. A., Hoag, S. W., Polli, J., Raju, G. K., & Woodcock, J. (2014). Understanding pharmaceutical quality by design. The AAPS journal, 16(4), 771-783. doi:10.1208/s12248-014-9598-3
Zhang, Z., Tan, S., & Feng, S.-S. (2012). Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 33(19), 4889-4906. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.03.046
Zhu, H., Chen, H., Zeng, X., Wang, Z., Zhang, X., Wu, Y., . . . Feng, S.-S. (2014). Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 35(7), 2391-2400. doi:https://doi.org/10.1016/j.biomaterials.2013.11.086
Secil Caban-toktas
This is me
Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey;Turkish Medicines and Medical Devices Agency, Ministry of Health of Turkey, Ankara, Turkey
Hayrettin Tonbul
This is me
Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey;Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
Firat Yerlikaya
This is me
Elixir Pharmaceutical Research and Development Corporation, Ankara, Turkey;Department of Pharmaceutical Technology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
Yesim Aktas
Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Yilmaz Capan
This is me
Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey;R&D Department of ILKO Pharmaceuticals, Ankara, Turkey
Sahin, A., Caban-toktas, S., Tonbul, H., Yerlikaya, F., et al. (2019). Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design. İstanbul Journal of Pharmacy, 49(3), 161-166.
AMA
Sahin A, Caban-toktas S, Tonbul H, Yerlikaya F, Aktas Y, Capan Y. Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design. iujp. December 2019;49(3):161-166.
Chicago
Sahin, Adem, Secil Caban-toktas, Hayrettin Tonbul, Firat Yerlikaya, Yesim Aktas, and Yilmaz Capan. “Development of Paclitaxel and Flurbiprofen Coloaded PLGA Nanoparticles: Understanding Critical Formulation and Process Parameters Using Plackett– Burman Design”. İstanbul Journal of Pharmacy 49, no. 3 (December 2019): 161-66.
EndNote
Sahin A, Caban-toktas S, Tonbul H, Yerlikaya F, Aktas Y, Capan Y (December 1, 2019) Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design. İstanbul Journal of Pharmacy 49 3 161–166.
IEEE
A. Sahin, S. Caban-toktas, H. Tonbul, F. Yerlikaya, Y. Aktas, and Y. Capan, “Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design”, iujp, vol. 49, no. 3, pp. 161–166, 2019.
ISNAD
Sahin, Adem et al. “Development of Paclitaxel and Flurbiprofen Coloaded PLGA Nanoparticles: Understanding Critical Formulation and Process Parameters Using Plackett– Burman Design”. İstanbul Journal of Pharmacy 49/3 (December 2019), 161-166.
JAMA
Sahin A, Caban-toktas S, Tonbul H, Yerlikaya F, Aktas Y, Capan Y. Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design. iujp. 2019;49:161–166.
MLA
Sahin, Adem et al. “Development of Paclitaxel and Flurbiprofen Coloaded PLGA Nanoparticles: Understanding Critical Formulation and Process Parameters Using Plackett– Burman Design”. İstanbul Journal of Pharmacy, vol. 49, no. 3, 2019, pp. 161-6.
Vancouver
Sahin A, Caban-toktas S, Tonbul H, Yerlikaya F, Aktas Y, Capan Y. Development of paclitaxel and flurbiprofen coloaded PLGA nanoparticles: understanding critical formulation and process parameters using Plackett– Burman design. iujp. 2019;49(3):161-6.