Research Article
BibTex RIS Cite
Year 2020, Volume: 50 Issue: 1, 54 - 59, 01.04.2020

Abstract

References

  • • Ağardan, N. B., Değim, Z., Yılmaz, Ş., Altıntaş, L., & Topal, T. (2016). The Effectiveness of raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech, 17(4), 968– 977.
  • • Agarwal M, A. M., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. (2018). Preparation of Chitosan Nanoparticles and their In-vitro Characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713–1720.
  • • Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–28.
  • • Ahmed, T. A., & Aljaeid, B. M. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy, 10, 483–507.
  • • Calvo, P., Remuñan-López, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Chitosan and Chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research, 14(10), 1431–1436.
  • • Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 80, 771–784.
  • • Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545–2561. • Fulop, Z., Saokham, P., & Loftsson, T. (2014). Sulfobutylether-betacyclodextrin/chitosan nano- and microparticles and their physicochemical characteristics. International Journal of Pharmaceutics, 472(1-2), 282–287. • Grenha, A. (2012). Chitosan nanoparticles: a survey of preparation methods. Journal of Drug Targeting, 20(4), 291–300.
  • • Kapor A, S. S., Nikolic, V., Cvezic, Z., & Rakic, S. (2008). DSC and XRD analysis of inclusion complexes of inclusion complexes of pharmacologically active compounds. Journal of Reseach in Physics, 32(1), 25–31.
  • • Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18.
  • • Loftsson, T., Duchene, D. (2007). Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 329(1–2), 1–11.
  • • Mahmoud, A. A., El-Feky, G. S., Kamel, R., & Awad, G. E. A. (2011). Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. International Journal of Pharmaceutics, 413(1), 229–236.
  • • Miecznik, P., & Kaczmarek, M. (2007). Ultrasonic investigations of inclusion complexation of α-cyclodextrin by iodide ions in pseudo-binary aqueous system. Journal of Molecular Liquids, 133(1), 120–124.
  • • Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., Wasan, E. K. (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 9(4), 53.
  • • Mutlu Ağardan, N. B., Değim, Z., & Yilmaz, Ş. (2014). Antitumoral and MMP-2 inhibition activity of raloxifene or tamoxifen loaded nanoparticles containing dimethyl-β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1), 31–36.
  • • Nallamuthu, I., Devi, A., & Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10(3), 203–211.
  • • Ohya, Y., Shiratani, M., Kobayashi, H., & Ouchi, T. (1994). Release behavior of 5-Fluorouracil from Chitosan-Gel Nanospheres Immobilizing 5-Fluorouracil Coated with Polysaccharides and Their Cell Specific Cytotoxicity. Journal of Macromolecular Science, Part A, 31(5), 629–642.
  • • Pant, A., & Negi, J. S. (2018). Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-beta-CD inclusion complex. European Journal of Pharmaceutical Sciences, 112, 180–185.
  • • Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal : SPJ : the Official Publication of The Saudi Pharmaceutical Society, 26(1), 64–70.
  • • Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., & Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosanTPP nano- and microparticles. Scientific Reports, 8(1), 4695.

Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex

Year 2020, Volume: 50 Issue: 1, 54 - 59, 01.04.2020

Abstract

Background and Aims: Ionic gelation strategy is the most common method used for the preparation of chitosan nanoparticles to obtain controlled drug delivery. Although it is a convenient and easy method, it is highly related with particle aggregation, high polidispersity index and insufficient physical/chemical stability. The aim of this study was the development of chitosan nanoparticles using tripolyphosphate-hydroxy propyl β-cyclodextrin or tripolyphosphate-sulfobutyl ether β-cyclodextrin inclusion complex as an alternative to TPP, and hence to increase physical stability, reduce polidispersity index and develop a stable nanocarrier for drug delivery purposes. Methods: The nanoparticles were prepared with the ionic gelation technique. The effects of chitosan percent, pH, and chitosan/tripolyphosphate ratio were investigated to find out the optimum nanoparticles in terms of particle size, polidispersity index and zeta potential. After determining the conditions for the tripolyphosphate-chitosan nanoparticles, the nanoparticles were prepared using tripolyphosphate-hydroxypropyl β-cyclodextrin or tripolyphosphate-sulfobutyl ether β-cyclodextrin to make a comparison with the nanoparticles which were prepared using tripolyphosphate. Results: The chitosan/tripolyphosphate-hydroxypropyl β-cyclodextrin nanoparticles were successfully formulated with 178 ± 84.1 nm particle size, 0.310±0.0134 PDI, 31.2±4.68 mV zeta potential. The interday changes in the measured characteristics were minimized for chitosan/tripolyphosphate-hydroxypropyl β-cyclodextrin nanoparticles as intended. Conclusion: CS/TPP-HP-β-CD nanoparticle formulation with particle size below 200 nm, high zeta potential and increased physical stability nanoparticles would offer a promising approach especially for hydrophobic drugs to improve their stability, solubility, encapsulation efficiency and in vivo bioavailability.

References

  • • Ağardan, N. B., Değim, Z., Yılmaz, Ş., Altıntaş, L., & Topal, T. (2016). The Effectiveness of raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech, 17(4), 968– 977.
  • • Agarwal M, A. M., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. (2018). Preparation of Chitosan Nanoparticles and their In-vitro Characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713–1720.
  • • Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–28.
  • • Ahmed, T. A., & Aljaeid, B. M. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy, 10, 483–507.
  • • Calvo, P., Remuñan-López, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Chitosan and Chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research, 14(10), 1431–1436.
  • • Crucho, C. I. C., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 80, 771–784.
  • • Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545–2561. • Fulop, Z., Saokham, P., & Loftsson, T. (2014). Sulfobutylether-betacyclodextrin/chitosan nano- and microparticles and their physicochemical characteristics. International Journal of Pharmaceutics, 472(1-2), 282–287. • Grenha, A. (2012). Chitosan nanoparticles: a survey of preparation methods. Journal of Drug Targeting, 20(4), 291–300.
  • • Kapor A, S. S., Nikolic, V., Cvezic, Z., & Rakic, S. (2008). DSC and XRD analysis of inclusion complexes of inclusion complexes of pharmacologically active compounds. Journal of Reseach in Physics, 32(1), 25–31.
  • • Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18.
  • • Loftsson, T., Duchene, D. (2007). Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 329(1–2), 1–11.
  • • Mahmoud, A. A., El-Feky, G. S., Kamel, R., & Awad, G. E. A. (2011). Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. International Journal of Pharmaceutics, 413(1), 229–236.
  • • Miecznik, P., & Kaczmarek, M. (2007). Ultrasonic investigations of inclusion complexation of α-cyclodextrin by iodide ions in pseudo-binary aqueous system. Journal of Molecular Liquids, 133(1), 120–124.
  • • Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., Wasan, E. K. (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 9(4), 53.
  • • Mutlu Ağardan, N. B., Değim, Z., & Yilmaz, Ş. (2014). Antitumoral and MMP-2 inhibition activity of raloxifene or tamoxifen loaded nanoparticles containing dimethyl-β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1), 31–36.
  • • Nallamuthu, I., Devi, A., & Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10(3), 203–211.
  • • Ohya, Y., Shiratani, M., Kobayashi, H., & Ouchi, T. (1994). Release behavior of 5-Fluorouracil from Chitosan-Gel Nanospheres Immobilizing 5-Fluorouracil Coated with Polysaccharides and Their Cell Specific Cytotoxicity. Journal of Macromolecular Science, Part A, 31(5), 629–642.
  • • Pant, A., & Negi, J. S. (2018). Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-beta-CD inclusion complex. European Journal of Pharmaceutical Sciences, 112, 180–185.
  • • Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal : SPJ : the Official Publication of The Saudi Pharmaceutical Society, 26(1), 64–70.
  • • Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., & Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosanTPP nano- and microparticles. Scientific Reports, 8(1), 4695.
There are 19 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Health Care Administration
Journal Section Original Article
Authors

N. Başaran Mutlu Ağardan This is me 0000-0002-4882-3124

Publication Date April 1, 2020
Submission Date April 1, 2019
Published in Issue Year 2020 Volume: 50 Issue: 1

Cite

APA Mutlu Ağardan, N. B. (2020). Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex. İstanbul Journal of Pharmacy, 50(1), 54-59.
AMA Mutlu Ağardan NB. Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex. iujp. April 2020;50(1):54-59.
Chicago Mutlu Ağardan, N. Başaran. “Studies on the Formulation Optimization and Controlled Ionic Gelation of Chitosan Nanoparticles Using TPP-HP-β-CD Inclusion Complex”. İstanbul Journal of Pharmacy 50, no. 1 (April 2020): 54-59.
EndNote Mutlu Ağardan NB (April 1, 2020) Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex. İstanbul Journal of Pharmacy 50 1 54–59.
IEEE N. B. Mutlu Ağardan, “Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex”, iujp, vol. 50, no. 1, pp. 54–59, 2020.
ISNAD Mutlu Ağardan, N. Başaran. “Studies on the Formulation Optimization and Controlled Ionic Gelation of Chitosan Nanoparticles Using TPP-HP-β-CD Inclusion Complex”. İstanbul Journal of Pharmacy 50/1 (April 2020), 54-59.
JAMA Mutlu Ağardan NB. Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex. iujp. 2020;50:54–59.
MLA Mutlu Ağardan, N. Başaran. “Studies on the Formulation Optimization and Controlled Ionic Gelation of Chitosan Nanoparticles Using TPP-HP-β-CD Inclusion Complex”. İstanbul Journal of Pharmacy, vol. 50, no. 1, 2020, pp. 54-59.
Vancouver Mutlu Ağardan NB. Studies on the formulation optimization and controlled ionic gelation of chitosan nanoparticles using TPP-HP-β-CD inclusion complex. iujp. 2020;50(1):54-9.