Research Article
BibTex RIS Cite

In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme

Year 2022, Volume: 52 Issue: 1, 73 - 79, 28.04.2022
https://doi.org/10.26650/IstanbulJPharm.2022.964803

Abstract

Background and Aims: The search for new enzyme inhibitors in plants is attractive because they can be used as drugs in the treatment of various diseases. Amaranthus spp. (Amaranthaceae) includes about 70 different species, some of which are ed- ible and some of which are used in traditional medicine to treat various ailments. Amaranthus lividus L. is a vegetable whose stems and leaves are used for human consumption in Turkey.Methods: In this study, the in vitro enzyme inhibition potential of A. lividus on α-amylase, α-glucosidase, acetylcholinester- ase (AChE), elastase, lipase, neuraminidase and tyrosinase was investigated for the first time. For this purpose, water extract of A. lividus was prepared. The tests of enzyme inhibitory activity were carried out by spectrophotometric and fluorometric methods.
Results: The water extract showed significant α-glucosidase and α-amylase inhibitory activities. Also, it displayed good elas- tase, lipase and tyrosinase inhibitory activities. However, it exhibited low inhibitory activity on AChE and neuraminidase.Conclusion: The plant and its active constituents may be used as an antidiabetic enzyme inhibitor with future phytochemical constituent analysis.

Supporting Institution

This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University [Project numbers: UDP-47164 and BEK-2017-24682].

Thanks

The authors are thankful to Professor Asuman Baytop from the identification of Amaranthus lividus L.

References

  • Al-Dabbas, M. M., Kitahara, K., Suganuma, T., Hashimoto, F., & Tade- ra, K. (2006). Antioxidant and α-amylase inhibitory compounds from aerial parts of Varthemia iphionoides Boiss. Bioscience, Bio- technology, and Biochemistry, 70, 2178–2184.
  • Alegbejo, J. O. (2013). Nutritional value and utilization of Amaran- thus (Amaranthus spp.)-A review. Bayero Journal of Pure and Ap- plied Sciences, 6(1), 136–143.
  • Al-Mamun, M. A., Husna, J., Khatun, M., Hasan, R., Kamruzzaman, M., Hoque, K., Reza, M. A., & Ferdousi, Z. (2016). Assessment of an- tioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complementary and Alternative Medicine, 16, 157. Doi: 10.1186/s12906-016-1130-0.
  • Amornrit, W., & Santiyanont, R. (2016). Neuroprotective effect of Amaranthus lividus and Amaranthus tricolor and their effects on gene expression of RAGE during oxidative stress in SH-SY5Y cells. Genetics and Molecular Research, 15, 15027562.
  • Badem, M., Korkmaz, N., Sener, S. O., Kanbolat, S., Ozgen, U., Sev- gi, S., Aliyazicioglu, R., & Coskun, M. (2018). Biological screening of traditional medicinal plants from villages of Akkuş (Ordu) in Turkey on the effects of tyrosinase. Journal of Pharmaceutical Re- search International, 25(6), 1–10.
  • Chatatikun, M., Yamauchi, T., Yamasaki, K., Aiba, S., & Chiabchalard A. (2019). Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. Journal of Tra- ditional Complementary Medicinal, 9(1), 66–72.
  • Chiocchio, I., Mandrone, M., Sanna, C., Maxia, A., Tacchini, M., & Poli, F. J. I. C. (2018). Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cos- metic interest. Industrial Crops and Products, 122, 498–505.
  • Conforti, F., Perri, V., Menichini, F., Marrelli, M., Uzunov, D., Statti, G., & Menichini, F. (2012). Wild Mediterranean dietary plants as in- hibitors of pancreatic lipase. Phytotherapy Research, 26, 600–604.
  • Elbashir, S. M. I., Devkota, H. P., Wada, M., Kishimoto, N., Moriuchi, M., Shuto, T., Misumi, S., Kai, H., & Watanabe, T. (2018). Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activi- ties of eighteen Sudanese medicinal plants. BMC Complementary and Alternative Medicine, 18(1), 1–12.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcho- linesterase activity. Biochemical Pharmacology, 7(2), 88–95.
  • Gunathilake, K. P. P., & Ranaweera, K. (2016). Antioxidative proper- ties of 34 green leafy vegetables. Journal of Functional Foods, 26, 176–186.
  • Hupparage, V. B., Rasal, V. P., Patil, V. S., Patil, P. P., Mulange, S. G., Malgi, A. P., Patil, S. A., & Karade, A. R. (2020). Ameliorative effect of Amaranthus tricolor L. leaves on scopolamine-induced cognitive dysfunction and oxidative stress in rats. Journal of Applied Phar- maceutical Science, 10(10), 111–120.
  • Ishtiaq, S., Ali, T., Ahmad, B., Anwar, F., Afridi, M. S. K., & Shaheen, H. (2017). Phytochemical and biological evaluations of methanolic extract of Amaranthus graecizans subsp. silvestris (Vill.) Brenan. Journal of Pharmaceutical Research International, 15(3), 1–11.
  • James, A. E., Timothy, D. W., & Gordon, L. (1996). Inhibition of hu- man leukocyte and pancreatic elastase by homologues of bovine pancreatic trypsin inhibitors. Biochemistry, 35, 9090–9096.
  • Kumar, B. A., Lakshman, K., Jayaveea, K. N., Shekar, D. S., Khan, S., Thippeswamy, B. S., & Veerapur, V. P. (2012). Antidiabetic, antihy- perlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn in alloxan induced diabetic rats. Experi- mental and Toxicologic Pathology, 64(1-2), 75–79.
  • Kumar, B. A., Lakshman, K., Nandeesh, R., Kumar, P. A., Manoj, B., Kumar, V., & Shekar, D. S. (2011). In vitro alpha-amylase inhibi- tion and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats. Saudi Journal of Biological Sciences, 18(1), 1–5.
  • Kumari, S., Elancheran, R., & Devi, R. (2018). Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaran- thus viridis extract. Indian Journal of Pharmacology, 50(3), 130–138.
  • Kwak, H. J., Park, S., Kim, N., Yoo, G., Park, J. H., Oh, Y., Nhiem, N. X., & Kim, S. H. (2018). Neuraminidase inhibitory activity by com- pounds isolated from aerial parts of Rhinacanthus nasutus. Natu- ral Product Research, 32(17), 2111–2115.
  • Lee, E. N., Song, J. H., & Lee, J. S. (2010). Screening of a potent antidementia acetylcholinesterase inhibitor-containing fruits and optimal extraction conditions. The Korean Journal of Food and Nu- trition, 23(3), 318–323.
  • Lee, N. & Hurt, A. C. (2018). Neuraminidase inhibitor resistance in influenza: A clinical perspective. Current Opinion in Infectious Dis- eases, 31(6), 520–526.
  • Lehner, R. & Verger, R. (1997). Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry, 36, 1861–1868.
  • Li, C. & Wang, M. H. (2014). In vitro biological evaluation of 100 selected methanol extracts from the traditional medicinal plants of Asia. Nutrition Research and Practice, 8(2), 151–157.
  • Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314.
  • Liyanaarachchi, G. D., Samarasekera, J. K. R. R., Mahanama, K. R. R., & Hemalal, K. D. P. (2018). Tyrosinase, elastase, hyaluronidase, inhibito- ry and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Industrial Crops and Products, 111, 597–605.
  • Lobbens, E. S., Vissing, K. J., Jorgensen, L., van de Weert, M., & Jäger, A. K. (2017). Screening of plants used in the European tradi- tional medicine to treat memory disorders for acetylcholinester- ase inhibitory activity and anti amyloidogenic activity. Journal of Ethnopharmacology, 200, 66–73.
  • Mahal, A., Duan, M., Zinad, D. S., Mohapatra, R. K., Obaidullah, A. J., Wei, X., Pradhan, M. K., Das, D., Kandi, V., Zinadjk, H. S., & Zhu, Q. (2021). Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Advances, 11(3), 1804–1840.
  • Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., & Osajima,Y. (1996). In vitro survey of alpha-glucosidase inhibitory food components. Bioscience, Biotechnology, and Biochemistry, 60, 2019–2022.
  • Mondal, A., Guria, T., & Maity, T. K. (2015). A new ester of fatty acid from a methanol extract of the whole plant of Amaranthus spino- sus and its α-glucosidase inhibitory activity. Pharmaceutical Biol- ogy, 53(4), 600–604.
  • Myers R. W., Lee R. T., Lee Y. C., Thomas G. H., Reynolds L. W., & Uchida Y. (1980). The synthesis of 4-methylumbelliferyl α-ketoside of N-acetylneuraminic acid and its use in a fluorometric assay for neuraminidase. Analytical Biochemistry, 101, 166–174.
  • Nuria, M. C., Suganda, A. G., Sukandar, E. Y., & Insanu, M. (2020). Acetylcholinesterase: Inhibitory activity of some Indonesian veg- etables and fraction of selected plants. Journal of Applied Pharma- ceutical Science, 10(1), 101–107.
  • Orhan, I., & Aslan, M. (2009). Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. Journal of Ethnopharmacology, 122(2), 327–332.
  • Ozsoy, N., Yilmaz, T., Kurt, O., Can, A., & Yanardag, R. (2009). In vi- tro antioxidant activity of Amaranthus lividus L. Food Chemistry, 116(4), 867–872.
  • Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the prepa- ration of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119.
  • Peter, K. & Gandhi, P. (2017). Rediscovering the therapeutic poten- tial of Amaranthus species: A review. Egyptian Journal of Basic and Applied Sciences, 4(3), 196–205.
  • Ramsay, R. R. & Tipton, K. F. (2017). Assessment of enzyme inhibi- tion: A review with examples from the development of mono- amine oxidase and cholinesterase inhibitory drugs. Molecules, 22(7), 1192. Doi: 10.3390/molecules22071192.
  • Rauf, A., & Jehan, N. (2017). Natural products as a potential en- zyme inhibitors from medicinal plants. In Şentürk., M. (Eds.), En- zyme Inhibitors and Activators (pp. 165-177). Rijeka, Croatia, InTech.
  • Rocchetti, G., Tomas, M., Zhang, L., Zengin, G., Lucini, L., & Capano- glu, E. (2020). Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal di- gestion on the untargeted metabolomic profile. Food Chemistry, 332, 127415. Doi: 10.1016/j.foodchem.2020.127415
  • Santos, T. C. D., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & Paes, A.M. D. A. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Frontiers in Pharmacology, 9, 1192. Doi: 10.3389/fphar.2018.01192.
  • Sarker, U. Oba, S., & Daramy, M. A. (2020). Nutrients, minerals, anti- oxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem Amaranth. Scientific Reports, 10, 1–9.
  • Seo, J. O., Do, M. H., Lee, J. H., Lee, T. H., Wahedi, H. M., Park, Y. U., & Kim,S. Y. (2016). Modulation of melanin synthesis by Amaranthus spp. L seed extract in melan-a cells. Natural Product Sciences, 22(3), 168–174.
  • Shin, N. H., Lee, K. S., Kang, S. H., Min, K. R., Lee, S. H., & Kim, Y. S. (1997). Inhibitory effects of herbal extracts on dopa oxidase activ- ity of tyrosinase. Natural Product Sciences, 3(2), 111–121.
  • Silva, S. G., da Costa, R. A., de Oliveira, M. S., da Cruz, J. N., Figueire- do, P. L. B., Brasil, D. D. S. B., Nascimento, L. D., Neto, A. M. J. C., Ju- nior, R. N. C., & Andrade, E. H. D. A. (2019). Chemical profile of Lip- pia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PLoS One, 14(3), e0213393.
  • Şöhretoğlu, D., & Sari, S. (2020). Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochemistry Reviews, 19, 1081–1092.
  • Vanni, A., Gastaldi, D., & Gıunata, G. (1990). Kinetic investigations on the double enzymatic activity of the tyrosinase mushroom. Annales des Chimie et des Physique, 80, 35–60.
  • Wang, Z., Cheng, L. P., Zhang, X. H., Pang, W., Li, L., & Zhao, J. L. (2017). Design, synthesis and biological evaluation of novel osel- tamivir derivatives as potent neuraminidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(24), 5429–5435.
  • Yang, Y.C., Mong, M.C., Wu, W.T., Wang, Z.H., & Yin, M.C. (2020). Phytochemical profiles and anti-diabetic benefits of two edible Amaranthus species. CyTA-Journal of Food, 18(1), 94-101.
  • Yi, M. R., Kang, C. H., & Bu, H. J. (2017). Anti-inflammatory and ty- rosinase ınhibition effects of Amaranth (Amaranthus spp L.) seed extract. Korean Journal of Plant Resources, 30(2), 144–151.
  • Yilmaz-Ozden, T., Can, A., Karatug, A., Pala-Kara, Z., Okyar, A., & Bolkent, S. (2016). Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicology and Industrial Health, 32, 1143–1152.
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309.
Year 2022, Volume: 52 Issue: 1, 73 - 79, 28.04.2022
https://doi.org/10.26650/IstanbulJPharm.2022.964803

Abstract

References

  • Al-Dabbas, M. M., Kitahara, K., Suganuma, T., Hashimoto, F., & Tade- ra, K. (2006). Antioxidant and α-amylase inhibitory compounds from aerial parts of Varthemia iphionoides Boiss. Bioscience, Bio- technology, and Biochemistry, 70, 2178–2184.
  • Alegbejo, J. O. (2013). Nutritional value and utilization of Amaran- thus (Amaranthus spp.)-A review. Bayero Journal of Pure and Ap- plied Sciences, 6(1), 136–143.
  • Al-Mamun, M. A., Husna, J., Khatun, M., Hasan, R., Kamruzzaman, M., Hoque, K., Reza, M. A., & Ferdousi, Z. (2016). Assessment of an- tioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complementary and Alternative Medicine, 16, 157. Doi: 10.1186/s12906-016-1130-0.
  • Amornrit, W., & Santiyanont, R. (2016). Neuroprotective effect of Amaranthus lividus and Amaranthus tricolor and their effects on gene expression of RAGE during oxidative stress in SH-SY5Y cells. Genetics and Molecular Research, 15, 15027562.
  • Badem, M., Korkmaz, N., Sener, S. O., Kanbolat, S., Ozgen, U., Sev- gi, S., Aliyazicioglu, R., & Coskun, M. (2018). Biological screening of traditional medicinal plants from villages of Akkuş (Ordu) in Turkey on the effects of tyrosinase. Journal of Pharmaceutical Re- search International, 25(6), 1–10.
  • Chatatikun, M., Yamauchi, T., Yamasaki, K., Aiba, S., & Chiabchalard A. (2019). Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. Journal of Tra- ditional Complementary Medicinal, 9(1), 66–72.
  • Chiocchio, I., Mandrone, M., Sanna, C., Maxia, A., Tacchini, M., & Poli, F. J. I. C. (2018). Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cos- metic interest. Industrial Crops and Products, 122, 498–505.
  • Conforti, F., Perri, V., Menichini, F., Marrelli, M., Uzunov, D., Statti, G., & Menichini, F. (2012). Wild Mediterranean dietary plants as in- hibitors of pancreatic lipase. Phytotherapy Research, 26, 600–604.
  • Elbashir, S. M. I., Devkota, H. P., Wada, M., Kishimoto, N., Moriuchi, M., Shuto, T., Misumi, S., Kai, H., & Watanabe, T. (2018). Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activi- ties of eighteen Sudanese medicinal plants. BMC Complementary and Alternative Medicine, 18(1), 1–12.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcho- linesterase activity. Biochemical Pharmacology, 7(2), 88–95.
  • Gunathilake, K. P. P., & Ranaweera, K. (2016). Antioxidative proper- ties of 34 green leafy vegetables. Journal of Functional Foods, 26, 176–186.
  • Hupparage, V. B., Rasal, V. P., Patil, V. S., Patil, P. P., Mulange, S. G., Malgi, A. P., Patil, S. A., & Karade, A. R. (2020). Ameliorative effect of Amaranthus tricolor L. leaves on scopolamine-induced cognitive dysfunction and oxidative stress in rats. Journal of Applied Phar- maceutical Science, 10(10), 111–120.
  • Ishtiaq, S., Ali, T., Ahmad, B., Anwar, F., Afridi, M. S. K., & Shaheen, H. (2017). Phytochemical and biological evaluations of methanolic extract of Amaranthus graecizans subsp. silvestris (Vill.) Brenan. Journal of Pharmaceutical Research International, 15(3), 1–11.
  • James, A. E., Timothy, D. W., & Gordon, L. (1996). Inhibition of hu- man leukocyte and pancreatic elastase by homologues of bovine pancreatic trypsin inhibitors. Biochemistry, 35, 9090–9096.
  • Kumar, B. A., Lakshman, K., Jayaveea, K. N., Shekar, D. S., Khan, S., Thippeswamy, B. S., & Veerapur, V. P. (2012). Antidiabetic, antihy- perlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn in alloxan induced diabetic rats. Experi- mental and Toxicologic Pathology, 64(1-2), 75–79.
  • Kumar, B. A., Lakshman, K., Nandeesh, R., Kumar, P. A., Manoj, B., Kumar, V., & Shekar, D. S. (2011). In vitro alpha-amylase inhibi- tion and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats. Saudi Journal of Biological Sciences, 18(1), 1–5.
  • Kumari, S., Elancheran, R., & Devi, R. (2018). Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaran- thus viridis extract. Indian Journal of Pharmacology, 50(3), 130–138.
  • Kwak, H. J., Park, S., Kim, N., Yoo, G., Park, J. H., Oh, Y., Nhiem, N. X., & Kim, S. H. (2018). Neuraminidase inhibitory activity by com- pounds isolated from aerial parts of Rhinacanthus nasutus. Natu- ral Product Research, 32(17), 2111–2115.
  • Lee, E. N., Song, J. H., & Lee, J. S. (2010). Screening of a potent antidementia acetylcholinesterase inhibitor-containing fruits and optimal extraction conditions. The Korean Journal of Food and Nu- trition, 23(3), 318–323.
  • Lee, N. & Hurt, A. C. (2018). Neuraminidase inhibitor resistance in influenza: A clinical perspective. Current Opinion in Infectious Dis- eases, 31(6), 520–526.
  • Lehner, R. & Verger, R. (1997). Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry, 36, 1861–1868.
  • Li, C. & Wang, M. H. (2014). In vitro biological evaluation of 100 selected methanol extracts from the traditional medicinal plants of Asia. Nutrition Research and Practice, 8(2), 151–157.
  • Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314.
  • Liyanaarachchi, G. D., Samarasekera, J. K. R. R., Mahanama, K. R. R., & Hemalal, K. D. P. (2018). Tyrosinase, elastase, hyaluronidase, inhibito- ry and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Industrial Crops and Products, 111, 597–605.
  • Lobbens, E. S., Vissing, K. J., Jorgensen, L., van de Weert, M., & Jäger, A. K. (2017). Screening of plants used in the European tradi- tional medicine to treat memory disorders for acetylcholinester- ase inhibitory activity and anti amyloidogenic activity. Journal of Ethnopharmacology, 200, 66–73.
  • Mahal, A., Duan, M., Zinad, D. S., Mohapatra, R. K., Obaidullah, A. J., Wei, X., Pradhan, M. K., Das, D., Kandi, V., Zinadjk, H. S., & Zhu, Q. (2021). Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Advances, 11(3), 1804–1840.
  • Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., & Osajima,Y. (1996). In vitro survey of alpha-glucosidase inhibitory food components. Bioscience, Biotechnology, and Biochemistry, 60, 2019–2022.
  • Mondal, A., Guria, T., & Maity, T. K. (2015). A new ester of fatty acid from a methanol extract of the whole plant of Amaranthus spino- sus and its α-glucosidase inhibitory activity. Pharmaceutical Biol- ogy, 53(4), 600–604.
  • Myers R. W., Lee R. T., Lee Y. C., Thomas G. H., Reynolds L. W., & Uchida Y. (1980). The synthesis of 4-methylumbelliferyl α-ketoside of N-acetylneuraminic acid and its use in a fluorometric assay for neuraminidase. Analytical Biochemistry, 101, 166–174.
  • Nuria, M. C., Suganda, A. G., Sukandar, E. Y., & Insanu, M. (2020). Acetylcholinesterase: Inhibitory activity of some Indonesian veg- etables and fraction of selected plants. Journal of Applied Pharma- ceutical Science, 10(1), 101–107.
  • Orhan, I., & Aslan, M. (2009). Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. Journal of Ethnopharmacology, 122(2), 327–332.
  • Ozsoy, N., Yilmaz, T., Kurt, O., Can, A., & Yanardag, R. (2009). In vi- tro antioxidant activity of Amaranthus lividus L. Food Chemistry, 116(4), 867–872.
  • Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the prepa- ration of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119.
  • Peter, K. & Gandhi, P. (2017). Rediscovering the therapeutic poten- tial of Amaranthus species: A review. Egyptian Journal of Basic and Applied Sciences, 4(3), 196–205.
  • Ramsay, R. R. & Tipton, K. F. (2017). Assessment of enzyme inhibi- tion: A review with examples from the development of mono- amine oxidase and cholinesterase inhibitory drugs. Molecules, 22(7), 1192. Doi: 10.3390/molecules22071192.
  • Rauf, A., & Jehan, N. (2017). Natural products as a potential en- zyme inhibitors from medicinal plants. In Şentürk., M. (Eds.), En- zyme Inhibitors and Activators (pp. 165-177). Rijeka, Croatia, InTech.
  • Rocchetti, G., Tomas, M., Zhang, L., Zengin, G., Lucini, L., & Capano- glu, E. (2020). Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal di- gestion on the untargeted metabolomic profile. Food Chemistry, 332, 127415. Doi: 10.1016/j.foodchem.2020.127415
  • Santos, T. C. D., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & Paes, A.M. D. A. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Frontiers in Pharmacology, 9, 1192. Doi: 10.3389/fphar.2018.01192.
  • Sarker, U. Oba, S., & Daramy, M. A. (2020). Nutrients, minerals, anti- oxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem Amaranth. Scientific Reports, 10, 1–9.
  • Seo, J. O., Do, M. H., Lee, J. H., Lee, T. H., Wahedi, H. M., Park, Y. U., & Kim,S. Y. (2016). Modulation of melanin synthesis by Amaranthus spp. L seed extract in melan-a cells. Natural Product Sciences, 22(3), 168–174.
  • Shin, N. H., Lee, K. S., Kang, S. H., Min, K. R., Lee, S. H., & Kim, Y. S. (1997). Inhibitory effects of herbal extracts on dopa oxidase activ- ity of tyrosinase. Natural Product Sciences, 3(2), 111–121.
  • Silva, S. G., da Costa, R. A., de Oliveira, M. S., da Cruz, J. N., Figueire- do, P. L. B., Brasil, D. D. S. B., Nascimento, L. D., Neto, A. M. J. C., Ju- nior, R. N. C., & Andrade, E. H. D. A. (2019). Chemical profile of Lip- pia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PLoS One, 14(3), e0213393.
  • Şöhretoğlu, D., & Sari, S. (2020). Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochemistry Reviews, 19, 1081–1092.
  • Vanni, A., Gastaldi, D., & Gıunata, G. (1990). Kinetic investigations on the double enzymatic activity of the tyrosinase mushroom. Annales des Chimie et des Physique, 80, 35–60.
  • Wang, Z., Cheng, L. P., Zhang, X. H., Pang, W., Li, L., & Zhao, J. L. (2017). Design, synthesis and biological evaluation of novel osel- tamivir derivatives as potent neuraminidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(24), 5429–5435.
  • Yang, Y.C., Mong, M.C., Wu, W.T., Wang, Z.H., & Yin, M.C. (2020). Phytochemical profiles and anti-diabetic benefits of two edible Amaranthus species. CyTA-Journal of Food, 18(1), 94-101.
  • Yi, M. R., Kang, C. H., & Bu, H. J. (2017). Anti-inflammatory and ty- rosinase ınhibition effects of Amaranth (Amaranthus spp L.) seed extract. Korean Journal of Plant Resources, 30(2), 144–151.
  • Yilmaz-Ozden, T., Can, A., Karatug, A., Pala-Kara, Z., Okyar, A., & Bolkent, S. (2016). Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicology and Industrial Health, 32, 1143–1152.
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309.
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Health Care Administration
Journal Section Original Article
Authors

Gozde Hasbal Çelikok 0000-0002-0216-7635

Tuğba Yılmaz Özden 0000-0003-4426-4502

Özlem Saçan This is me 0000-0001-6503-4613

Ayse Can 0000-0002-8538-663X

Refiye Yanardağ This is me 0000-0003-4185-4363

Publication Date April 28, 2022
Submission Date July 8, 2021
Published in Issue Year 2022 Volume: 52 Issue: 1

Cite

APA Hasbal Çelikok, G., Yılmaz Özden, T., Saçan, Ö., Can, A., et al. (2022). In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme. İstanbul Journal of Pharmacy, 52(1), 73-79. https://doi.org/10.26650/IstanbulJPharm.2022.964803
AMA Hasbal Çelikok G, Yılmaz Özden T, Saçan Ö, Can A, Yanardağ R. In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme. iujp. April 2022;52(1):73-79. doi:10.26650/IstanbulJPharm.2022.964803
Chicago Hasbal Çelikok, Gozde, Tuğba Yılmaz Özden, Özlem Saçan, Ayse Can, and Refiye Yanardağ. “In Vitro Inhibitory Potential of Amaranthus Lividus L. Against Therapeutic Target Enzyme”. İstanbul Journal of Pharmacy 52, no. 1 (April 2022): 73-79. https://doi.org/10.26650/IstanbulJPharm.2022.964803.
EndNote Hasbal Çelikok G, Yılmaz Özden T, Saçan Ö, Can A, Yanardağ R (April 1, 2022) In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme. İstanbul Journal of Pharmacy 52 1 73–79.
IEEE G. Hasbal Çelikok, T. Yılmaz Özden, Ö. Saçan, A. Can, and R. Yanardağ, “In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme”, iujp, vol. 52, no. 1, pp. 73–79, 2022, doi: 10.26650/IstanbulJPharm.2022.964803.
ISNAD Hasbal Çelikok, Gozde et al. “In Vitro Inhibitory Potential of Amaranthus Lividus L. Against Therapeutic Target Enzyme”. İstanbul Journal of Pharmacy 52/1 (April 2022), 73-79. https://doi.org/10.26650/IstanbulJPharm.2022.964803.
JAMA Hasbal Çelikok G, Yılmaz Özden T, Saçan Ö, Can A, Yanardağ R. In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme. iujp. 2022;52:73–79.
MLA Hasbal Çelikok, Gozde et al. “In Vitro Inhibitory Potential of Amaranthus Lividus L. Against Therapeutic Target Enzyme”. İstanbul Journal of Pharmacy, vol. 52, no. 1, 2022, pp. 73-79, doi:10.26650/IstanbulJPharm.2022.964803.
Vancouver Hasbal Çelikok G, Yılmaz Özden T, Saçan Ö, Can A, Yanardağ R. In vitro inhibitory potential of Amaranthus lividus L. against therapeutic target enzyme. iujp. 2022;52(1):73-9.