Research Article
BibTex RIS Cite
Year 2022, Volume: 52 Issue: 3, 289 - 296, 30.12.2022
https://doi.org/10.26650/IstanbulJPharm.2022.1058189

Abstract

References

  • Abbas, A. K., Lichtman, A. H., & Pillai, S. (2019). Basic immunology e-book: Functions and disorders of the immune system. Amsterdam, Netherlands: Elsevier Health Sciences.
  • Ansari, A. W., Khan, M. A., Schmidt, R. E., & Broering, D. C. (2017). Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunology Letters, 183, 8–16.
  • Crepeau, R. L., & Ford, M. L. (2017). Challenges and opportuni- ties in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opinion on Biological Therapy, 17(8), 1001–1012.
  • Goronzy, J. J., & Weyand, C. M. (2008). T-cell co-stimulatory path- ways in autoimmunity. Arthritis Research & Therapy, 10(1), 1–10.
  • Green, J. M., Noel, P. J., Sperling, A. I., Walunas, T. L., Gray, G. S., Blue- stone, J. A., & Thompson, C. B. (1994). Absence of B7-dependent responses in CD28-deficient mice. Immunity, 1(6), 501–508.
  • Janeway, C. A. J., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunopiology: the immune system in health and disease. 5” ed. New York.
  • Jovčevska, I., & Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs, 34(1), 11–26.
  • Khan, U., & Ghazanfar, H. (2018). T lymphocytes and autoimmuni- ty. International Review of Cell and Molecular Biology, 341, 125–168.
  • Krupa Pawełand Spodzieja, M., & Sieradzan, A. K. (2021). Predic- tion of CD28-CD86 protein complex structure using different level of resolution approach. Journal of Molecular Graphics and Modelling, 103, 107802.
  • Larsen, C. P., Pearson, T. C., Adams, A. B., Tso, P., Shirasugi, N., Strob- ert, M. E., ... Peach, R. J. (2005). Rational development of LEA29Y (belatacept), a high‐affinity variant of CTLA4‐Ig with potent im- munosuppressive properties. American Journal of Transplanta- tion, 5(3), 443-453.
  • Leem, J., Dunbar, J., Georges, G., Shi, J., & Deane, C. M. (2016). A Body Builder: Automated antibody structure prediction with data--driven accuracy estimation. MAbs, 8(7), 1259–1268.
  • Mifsud, N. A., Illing, P. T., Lai, J. W., Fettke, H., Hensen, L., Huang, Z.,... & Purcell, A. W. (2021). Carbamazepine induces focused T cell responses in resolved Stevens-Johnson syndrome and toxic epi- dermal necrolysis cases but does not perturb the immunopepti- dome for T cell recognition. Frontiers in Immunology, 12, 653710.
  • Noble, J., Jouve, T., Janbon, B., Rostaing, L., & Malvezzi, P. (2019). Belatacept in kidney transplantation and its limitations. Expert Re- view of Clinical Immunology, 15(4), 359–367.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Green- blatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Ramagopal, U. A., Liu, W., Garrett-Thomson, S. C., Bonanno, J. B., Yan, Q., Srinivasan, M., ... Almo, S. C. (2017). Structural basis for can- cer immunotherapy by the first-in-class checkpoint inhibitor ipili- mumab. Proceedings of the National Academy of Sciences, 114(21), E4223-E4232.
  • Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J. & Baker, D. (2009). Structure prediction for CASP8 with all‐atom refinement using Rosetta. Proteins: Structure, Function, and Bioin- formatics, 77(S9), 89-99.
  • Schrodinger, LLC. (2015). The {PyMOL} Molecular Graphics Sys- tem, Version~1.8.
  • Siontorou, C. G. (2013). Nanobodies as novel agents for disease diagnosis and therapy. International Journal of Nanomedicine, 8, 4215.
  • Song, Y., DiMaio, F., Wang, R. Y.-R., Kim, D., Miles, C., Brunette, T. J., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with Rosetta CM. Structure, 21(10), 1735–1742.
  • Sun, S., Ding, Z., Yang, X., Zhao, X., Zhao, M., Gao, L., ... Lu, X. (2021).
  • Nanobody: a small antibody with big implications for tumor ther- apeutic strategy. International Journal of Nanomedicine, 16, 2337.
  • Van Balen, P., Kester, M. G., de Klerk, W., Crivello, P., Arrieta-Bolanos, E., de Ru, A. H., ... Falkenburg, J. F. (2020). Immunopeptidome analysis of HLA-DPB1 allelic variants reveals new functional hier- archies. The Journal of Immunology, 204(12), 3273-3282.
  • Vita, R., Zarebski, L., Greenbaum, J. A., Emami, H., & Hoof, I. (2012). Immune Epitope Database and Analysis Resource.
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids re- search, 46(W1), W296-W303.
  • Weitzner, B. D., Jeliazkov, J. R., Lyskov, S., Marze, N., Kuroda, D., Frick, R., ... Gray, J. J. (2017). Modeling and docking of antibody struc- tures with Rosetta. Nature protocols, 12(2), 401-416.

Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling

Year 2022, Volume: 52 Issue: 3, 289 - 296, 30.12.2022
https://doi.org/10.26650/IstanbulJPharm.2022.1058189

Abstract

Background and Aims: Active T cells are central players in the self-defense system as well as in immune-related diseases. Being crucial for T cell activation, the interaction of B7-1/2 with CD28 is associated with T cell activation-related diseases such as alloreactivity in transplantation and autoreactivity in autoimmune disorders. Nanobodies are the recombinant vari- able and single-domain smallest antigen-binding fragments. The focus of this study is to investigate the interactions be- tween B7-1/2 and eight antibodies at the molecular level utilizing computational methods, and to guide the best nanobody for in-vitro and in-vivo studies about immunosuppressive
Methods: After receiving the 3D models of agents via Robetta, molecular docking techniques were used to compare the bind- ing modes and affinities of six nanobodies and two FDA-approved fusion protein models against B7-1/2(CD80/CD86).
Results: According to our in silico outputs, we selected the top of model clusters from HADDOCK 2.4 (Z-Score of CD80/CD86:- 2.7 to -1.3/-2.1 to -2.1) and distinguished that 1A1 and 1B2 have higher affinities than Belatacept and Abatacept for the percentage of a calculation scale.
Conclusion: Our findings suggest that selected nanobodies show higher affinity by interacting with the CD80/86 epitope regions and provide helpful insights into the design and improvement of further computational investigations of nanobody modeling.

References

  • Abbas, A. K., Lichtman, A. H., & Pillai, S. (2019). Basic immunology e-book: Functions and disorders of the immune system. Amsterdam, Netherlands: Elsevier Health Sciences.
  • Ansari, A. W., Khan, M. A., Schmidt, R. E., & Broering, D. C. (2017). Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunology Letters, 183, 8–16.
  • Crepeau, R. L., & Ford, M. L. (2017). Challenges and opportuni- ties in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opinion on Biological Therapy, 17(8), 1001–1012.
  • Goronzy, J. J., & Weyand, C. M. (2008). T-cell co-stimulatory path- ways in autoimmunity. Arthritis Research & Therapy, 10(1), 1–10.
  • Green, J. M., Noel, P. J., Sperling, A. I., Walunas, T. L., Gray, G. S., Blue- stone, J. A., & Thompson, C. B. (1994). Absence of B7-dependent responses in CD28-deficient mice. Immunity, 1(6), 501–508.
  • Janeway, C. A. J., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunopiology: the immune system in health and disease. 5” ed. New York.
  • Jovčevska, I., & Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs, 34(1), 11–26.
  • Khan, U., & Ghazanfar, H. (2018). T lymphocytes and autoimmuni- ty. International Review of Cell and Molecular Biology, 341, 125–168.
  • Krupa Pawełand Spodzieja, M., & Sieradzan, A. K. (2021). Predic- tion of CD28-CD86 protein complex structure using different level of resolution approach. Journal of Molecular Graphics and Modelling, 103, 107802.
  • Larsen, C. P., Pearson, T. C., Adams, A. B., Tso, P., Shirasugi, N., Strob- ert, M. E., ... Peach, R. J. (2005). Rational development of LEA29Y (belatacept), a high‐affinity variant of CTLA4‐Ig with potent im- munosuppressive properties. American Journal of Transplanta- tion, 5(3), 443-453.
  • Leem, J., Dunbar, J., Georges, G., Shi, J., & Deane, C. M. (2016). A Body Builder: Automated antibody structure prediction with data--driven accuracy estimation. MAbs, 8(7), 1259–1268.
  • Mifsud, N. A., Illing, P. T., Lai, J. W., Fettke, H., Hensen, L., Huang, Z.,... & Purcell, A. W. (2021). Carbamazepine induces focused T cell responses in resolved Stevens-Johnson syndrome and toxic epi- dermal necrolysis cases but does not perturb the immunopepti- dome for T cell recognition. Frontiers in Immunology, 12, 653710.
  • Noble, J., Jouve, T., Janbon, B., Rostaing, L., & Malvezzi, P. (2019). Belatacept in kidney transplantation and its limitations. Expert Re- view of Clinical Immunology, 15(4), 359–367.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Green- blatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Ramagopal, U. A., Liu, W., Garrett-Thomson, S. C., Bonanno, J. B., Yan, Q., Srinivasan, M., ... Almo, S. C. (2017). Structural basis for can- cer immunotherapy by the first-in-class checkpoint inhibitor ipili- mumab. Proceedings of the National Academy of Sciences, 114(21), E4223-E4232.
  • Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J. & Baker, D. (2009). Structure prediction for CASP8 with all‐atom refinement using Rosetta. Proteins: Structure, Function, and Bioin- formatics, 77(S9), 89-99.
  • Schrodinger, LLC. (2015). The {PyMOL} Molecular Graphics Sys- tem, Version~1.8.
  • Siontorou, C. G. (2013). Nanobodies as novel agents for disease diagnosis and therapy. International Journal of Nanomedicine, 8, 4215.
  • Song, Y., DiMaio, F., Wang, R. Y.-R., Kim, D., Miles, C., Brunette, T. J., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with Rosetta CM. Structure, 21(10), 1735–1742.
  • Sun, S., Ding, Z., Yang, X., Zhao, X., Zhao, M., Gao, L., ... Lu, X. (2021).
  • Nanobody: a small antibody with big implications for tumor ther- apeutic strategy. International Journal of Nanomedicine, 16, 2337.
  • Van Balen, P., Kester, M. G., de Klerk, W., Crivello, P., Arrieta-Bolanos, E., de Ru, A. H., ... Falkenburg, J. F. (2020). Immunopeptidome analysis of HLA-DPB1 allelic variants reveals new functional hier- archies. The Journal of Immunology, 204(12), 3273-3282.
  • Vita, R., Zarebski, L., Greenbaum, J. A., Emami, H., & Hoof, I. (2012). Immune Epitope Database and Analysis Resource.
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids re- search, 46(W1), W296-W303.
  • Weitzner, B. D., Jeliazkov, J. R., Lyskov, S., Marze, N., Kuroda, D., Frick, R., ... Gray, J. J. (2017). Modeling and docking of antibody struc- tures with Rosetta. Nature protocols, 12(2), 401-416.
There are 26 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Halil İbrahim Bulut 0000-0002-9076-8296

Nail Beşli 0000-0002-6174-915X

Güven Yenmiş 0000-0002-6688-9725

Publication Date December 30, 2022
Submission Date January 15, 2022
Published in Issue Year 2022 Volume: 52 Issue: 3

Cite

APA Bulut, H. İ., Beşli, N., & Yenmiş, G. (2022). Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling. İstanbul Journal of Pharmacy, 52(3), 289-296. https://doi.org/10.26650/IstanbulJPharm.2022.1058189
AMA Bulut Hİ, Beşli N, Yenmiş G. Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling. iujp. December 2022;52(3):289-296. doi:10.26650/IstanbulJPharm.2022.1058189
Chicago Bulut, Halil İbrahim, Nail Beşli, and Güven Yenmiş. “Comparative Assessment of Different Nanobodies That Inhibit the Interaction of B7-1/2 With CD28 As a Potential Therapeutic Target for Immune-Related Diseases by Molecular Modeling”. İstanbul Journal of Pharmacy 52, no. 3 (December 2022): 289-96. https://doi.org/10.26650/IstanbulJPharm.2022.1058189.
EndNote Bulut Hİ, Beşli N, Yenmiş G (December 1, 2022) Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling. İstanbul Journal of Pharmacy 52 3 289–296.
IEEE H. İ. Bulut, N. Beşli, and G. Yenmiş, “Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling”, iujp, vol. 52, no. 3, pp. 289–296, 2022, doi: 10.26650/IstanbulJPharm.2022.1058189.
ISNAD Bulut, Halil İbrahim et al. “Comparative Assessment of Different Nanobodies That Inhibit the Interaction of B7-1/2 With CD28 As a Potential Therapeutic Target for Immune-Related Diseases by Molecular Modeling”. İstanbul Journal of Pharmacy 52/3 (December 2022), 289-296. https://doi.org/10.26650/IstanbulJPharm.2022.1058189.
JAMA Bulut Hİ, Beşli N, Yenmiş G. Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling. iujp. 2022;52:289–296.
MLA Bulut, Halil İbrahim et al. “Comparative Assessment of Different Nanobodies That Inhibit the Interaction of B7-1/2 With CD28 As a Potential Therapeutic Target for Immune-Related Diseases by Molecular Modeling”. İstanbul Journal of Pharmacy, vol. 52, no. 3, 2022, pp. 289-96, doi:10.26650/IstanbulJPharm.2022.1058189.
Vancouver Bulut Hİ, Beşli N, Yenmiş G. Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling. iujp. 2022;52(3):289-96.