Research Article
BibTex RIS Cite

Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice

Year 2022, Volume: 52 Issue: 3, 281 - 288, 30.12.2022
https://doi.org/10.26650/IstanbulJPharm.2022.1136288

Abstract

Background and Aims: Amanita phalloides is the deadliest toxic mushroom in the world and causes death from acute liver failure. α-amanitin (α-AMA), the most potent toxin, inhibits RNA polymerase II in hepatocytes, stops protein synthesis, and causes hepatotoxicity. However, the information about the mechanisms underlying hepatotoxicity caused by α-AMA is quite inadequate. This study aims to reveal the complex necrotic and apoptotic mechanisms occurring in mouse hepatocytes de- pending on A. phalloides exposure time in vivo.
Methods: BALB-c male mice were divided into 5 groups (n=7): control, α-AMA-2, α-AMA-12, α-AMA-72, and α-AMA-96 groups. A poisoning model was created by oral administration of A. phalloides mushroom extract containing 10 mg/kg of α-AMA to mice and they were sacrificed after 2, 12, 72, and 96 h. Then, TNF-α, Bax, caspase-3, and Bcl-2 gene expression levels in liver tissues were examined by the RT-qPCR method. Time-dependent damage to liver tissues was also evaluated histopathologically.
Results: RT-qPCR results showed that proinflammatory cytokine TNF-α mRNA expression levels increased in mouse liver tissues at 2 and 12 h after A. phalloides administration compared among the groups. Bax mRNA expression levels increased in the 12 and 72 h after A. phalloides ingestion. It was observed that caspase-3 mRNA expression levels increased in the 72 and 96 h groups compared among the groups, while Bcl-2 mRNA expression levels decreased in the 72 and 96 h groups.
Conclusion: Our findings showed that necrotic mechanisms develop in the early period after A. phalloides mushroom poison- ing, and then apoptotic mechanisms are effective. In conclusion, understanding the mechanisms of A. phalloides-induced hepatotoxicity will provide important information for new treatment strategies to be developed.

Supporting Institution

Scientific Research Projects Coordinator of Dicle University

Project Number

DUBAP:DUSAM.21.002

Thanks

The authors are thankful to the Scientific Research Projects Coordinator of Dicle University (DUBAP:DUSAM.21.002) for the partial supports.

References

  • Alldredge B, C. R., Ernst M, Guglielmo B, Jacobson P, Kradjan, WA, & Williams, BR. (2012). Koda-Kimble and Young’s applied therapeutics: The clinical use of drugs (K. W Ed. 10th edition ed.): Lippincott Wil- liams & Wilkins.
  • Angioi, A., Floris, M., Lepori, N., Bianco, P., Cabiddu, G., & Pani, A. (2021). Extensive proximal tubular necrosis without recovery fol- lowing the ingestion of Amanita phalloides: a case report. Journal of nephrology, 34(6), 2137-2140. doi:https://10.1007/s40620-021- 01018-w
  • Arima, Y., Hirota, T., Bronner, C., Mousli, M., Fujiwara, T., Niwa, S.-i.,. . . Saya, H. (2004). Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes to Cells, 9(2), 131-142. doi:https://doi.org/10.1111/j.1356- 9597.2004.00710.x
  • Arima, Y., Nitta, M., Kuninaka, S., Zhang, D., Fujiwara, T., Taya, Y., .. . Saya, H. (2005). Transcriptional blockade induces p53-depen- dent apoptosis associated with translocation of p53 to mito- chondria. Journal of Biological Chemistry, 280(19), 19166-19176. doi:https://10.1074/jbc.M410691200
  • Barbosa, I. A., Machado, N. G., Skildum, A. J., Scott, P. M., & Oliveira, P. J. (2012). Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochimica et Biophysica Acta, 1826(1), 238-254. doi:https://10.1016/j.bbcan.2012.04.005
  • Becker, C. E., Tong, T. G., Boerner, U., Roe, R. L., Sco, T. A., MacQuar- rie, M. B., & Bartter, F. (1976). Diagnosis and treatment of Amanita phalloides-type mushroom poisoning: use of thioctic acid. West- ern Journal of Medicine, 125(2), 100-109.
  • Enjalbert, F., Rapior, S., Nouguier-Soulé, J., Guillon, S., Amouroux, N., & Cabot, C. (2002). Treatment of amatoxin poisoning: 20-year retrospective analysis. Journal of Clinical Toxicology, 40(6), 715-757. doi:https://10.1081/clt-120014646
  • Escudié, L., Francoz, C., Vinel, J. P., Moucari, R., Cournot, M., Para- dis, V., . . . Durand, F. (2007). Amanita phalloides poisoning: reas- sessment of prognostic factors and indications for emergency liver transplantation. Journal of Hepatology, 46(3), 466-473. doi:https://10.1016/j.jhep.2006.10.013
  • Faulstich, H., Talas, A., & Wellhöner, H. H. (1985). Toxicokinetics of labeled amatoxins in the dog. Archives of Toxicology, 56(3), 190- 194. doi:https://10.1007/bf00333425
  • Fineschi, V., Di Paolo, M., & Centini, F. (1996). Histological criteria for diagnosis of amanita phalloides poisoning. Journal of Forensic Sciences, 41(3), 429-432.
  • Ganzert, M., Felgenhauer, N., & Zilker, T. (2005). Indication of liver transplantation following amatoxin intoxication. Journal of Hepa- tology, 42(2), 202-209. doi:https://10.1016/j.jhep.2004.10.023
  • Garcia, J., Costa, V. M., Carvalho, A. T., Silvestre, R., Duarte, J. A., Dourado, D. F., . . . Carvalho, F. (2015). A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Archives of Toxicology, 89(12), 2305-2323. doi:https://10.1007/ s00204-015-1582-x
  • Jan, M. A., Siddiqui, T. S., Ahmed, N., Ul Haq, I., & Khan, Z. (2008). Mushroom poisoning in children: clinical presentation and out- come. Journal of Ayub Medical College Abbottabad, 20(2), 99-101.
  • Karlson-Stiber, C., & Persson, H. (2003). Cytotoxic fungi--an overview. Toxicon, 42(4), 339-349. doi:https://10.1016/s0041-0101(03)00238-1
  • Kaya E, H. M., Karahan S, Bayram S, Yaykaşlı KO, Sürmen MG. (2012). Thermostability of Alpha Amanitin in Water and Methanol. Euro- pean Journal of Basic Medical Sciences, 2(4), 106-111. doi:https:// doi.org/10.21601/ejbms/9189
  • Kaya, E., Karahan, S., Bayram, R., Yaykasli, K. O., Colakoglu, S., & Sari- tas, A. (2015). Amatoxin and phallotoxin concentration in Amani- ta phalloides spores and tissues. Toxicology and Industrial Health, 31(12), 1172-1177. doi:https://10.1177/0748233713491809
  • Kaya, E., Surmen, M. G., Yaykasli, K. O., Karahan, S., Oktay, M., Turan, H., . . . Erdem, H. (2014). Dermal absorption and toxicity of alpha amanitin in mice. Cutaneous and Ocular Toxicology, 33(2), 154-160. doi:10.3109/15569527.2013.802697
  • Kaya, E., Yilmaz, I., Admis, O., Oktay, M., Bayram, R., Bakirci, S., . .. Colakoglu, S. (2016). Effects of erdosteine on alpha amanitin- induced hepatotoxicity in mice. Toxin Reviews, 35(1-2), 4-9. doi:htt ps://10.1080/15569543.2016.1178146
  • Kaya, E., Yilmaz, I., Sinirlioglu, Z. A., Karahan, S., Bayram, R., Yaykasli, K. O., . . . Severoglu, Z. (2013). Amanitin and phallotoxin concen- tration in Amanita phalloides var. alba mushroom. Toxicon, 76, 225-233. doi:https://10.1016/j.toxicon.2013.10.008
  • Leist, M., Gantner, F., Naumann, H., Bluethmann, H., Vogt, K., Brige- lius-Flohé, R., . . . Wendel, A. (1997). Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology, 112(3), 923-934. doi:https://10.1053/gast.1997. v112.pm9041255
  • Li, Y., Xi, Y., Tao, G., Xu, G., Yang, Z., Fu, X., . . . Jiang, T. (2020). Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway. International Immunopharmacol- ogy, 83, 106386. doi:https://10.1016/j.intimp.2020.106386
  • Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G., & Rutter, W. J. (1970). Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science, 170(3956), 447-449. doi:https://10.1126/ science.170.3956.447
  • Magdalan, J., Ostrowska, A., Piotrowska, A., Gomułkiewicz, A., Podhorska-Okołów, M., Patrzałek, D., . . . Dziegiel, P. (2010). Ben- zylpenicillin, acetylcysteine and silibinin as antidotes in human hepatocytes intoxicated with alpha-amanitin. Experimental and Toxicologic Pathology, 62(4), 367-373. doi:https://10.1016/j. etp.2009.05.003
  • Magdalan, J., Ostrowska, A., Piotrowska, A., Izykowska, I., Nowak, M., Gomułkiewicz, A., . . . Dziegiel, P. (2010). alpha-Amanitin in- duced apoptosis in primary cultured dog hepatocytes. Folia Histochemica et Cytobiologica, 48(1), 58-62. doi:https://10.2478/ v10042-010-0010-6
  • Magdalan, J., Piotrowska, A., Gomułkiewicz, A., Sozański, T., Podhorska-Okołów, M., Szeląg, A., & Dzięgiel, P. (2011). Ben- zylpenicyllin and acetylcysteine protection from α-amanitin- induced apoptosis in human hepatocyte cultures. Experimental and Toxicologic Pathology, 63(4), 311-315. doi:https://10.1016/j. etp.2010.02.004
  • McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology, 5(4), a008656-a008656. doi:https://10.1101/cshperspect.a008656
  • Park, R., Choi, W. G., Lee, M. S., Cho, Y. Y., Lee, J. Y., Kang, H. C., . . . Lee, H. S. (2021). Pharmacokinetics of α-amanitin in mice us- ing liquid chromatography-high resolution mass spectrometry and in vitro drug-drug interaction potentials. Journal of Toxicol- ogy and Environmental Health, Part A, 84(20), 821-835. doi:htt ps://10.1080/15287394.2021.1944942
  • Pišlar, A., Sabotič, J., Šlenc, J., Brzin, J., & Kos, J. (2016). Cytotoxic L-amino-acid oxidases from Amanita phalloides and Clitocybe geotropa induce caspase-dependent apoptosis. Cell Death Dis- covery, 2(1), 16021. doi:https://10.1038/cddiscovery.2016.21
  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101-1108. doi:https://10.1038/nprot.2008.73
  • Serné, E. H., Toorians, A. W., Gietema, J. A., Bronsveld, W., Haags- ma, E. B., & Mulder, P. O. (1996). Amanita phalloides, a poten- tially lethal mushroom: its clinical presentation and therapeutic options. Netherlands Journal of Medicine, 49(1), 19-23. doi:htt ps://10.1016/0300-2977(95)00096-8
  • Smith, M. R., & Davis, R. L. (2016). Mycetismus: a review. Gastroen- terology Report (Oxford), 4(2), 107-112. doi:https://10.1093/gastro/ gov062
  • Tiegs, G., & Horst, A. K. (2022). TNF in the liver: targeting a central player in inflammation. Seminars in Immunopathology, 44(4), 445- 459. doi:10.1007/s00281-022-00910-2
  • Tong, T. C., Hernandez, M., Richardson, W. H., 3rd, Betten, D. P., Favata, M., Riffenburgh, R. H., . . . Tanen, D. A. (2007). Compara- tive treatment of alpha-amanitin poisoning with N-acetylcys- teine, benzylpenicillin, cimetidine, thioctic acid, and silybin in a murine model. Annals of Emergency Medicine, 50(3), 282-288. doi:https://10.1016/j.annemergmed.2006.12.015
  • Vetter, J. (1998). Toxins of Amanita phalloides. Toxicon, 36(1), 13-24. doi:https://10.1016/s0041-0101(97)00074-3
  • Wang, M., Chen, Y., Guo, Z., Yang, C., Qi, J., Fu, Y., . . . Wang, Y. (2018). Changes in the mitochondrial proteome in human hepatocytes in response to alpha-amanitin hepatotoxicity. Toxicon, 156, 34-40. doi:https://10.1016/j.toxicon.2018.11.002
  • Wieland, T. (1983). The toxic peptides from Amanita mushrooms. International Journal of Peptide Research, 22(3), 257-276. doi:https: //10.1111/j.1399-3011.1983.tb02093.x
  • Wieland, T., & Faulstich, H. (1978). Amatoxins, phallotoxins, phal- lolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Critical Reviews in Biochem- istry, 5(3), 185-260. doi:https://10.3109/10409237809149870
  • Yilmaz, I., Ermis, F., Akata, I., & Kaya, E. (2015). A Case Study: What Doses of Amanita phalloides and Amatoxins Are Lethal to Hu- mans? Wilderness & Environmental Medicine, 26(4), 491-496. doi:https://10.1016/j.wem.2015.08.002
  • Zhang, C., Wang, C., Tang, S., Sun, Y., Zhao, D., Zhang, S., . . . Xiao, X. (2013). TNFR1/TNF-α and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food and Chemical Toxicology, 62, 825-838. doi:https://doi. org/10.1016/j.fct.2013.10.022
  • Zhao, J., Cao, M., Zhang, J., Sun, Q., Chen, Q., & Yang, Z. R. (2006). Pathological effects of the mushroom toxin alpha-amanitin on BALB/c mice. Peptides, 27(12), 3047-3052. doi:https://10.1016/j. peptides.2006.08.015
  • Zhou, H. Q., Liu, W., Wang, J., Huang, Y. Q., Li, P. Y., Zhu, Y., . . . Zhao, Y. L. (2017). Paeoniflorin attenuates ANIT-induced cholestasis by in- hibiting apoptosis in vivo via mitochondria-dependent pathway. Biomedicine & Pharmacotherapy, 89, 696-704. doi:https://10.1016/j. biopha.2017.02.084
Year 2022, Volume: 52 Issue: 3, 281 - 288, 30.12.2022
https://doi.org/10.26650/IstanbulJPharm.2022.1136288

Abstract

Project Number

DUBAP:DUSAM.21.002

References

  • Alldredge B, C. R., Ernst M, Guglielmo B, Jacobson P, Kradjan, WA, & Williams, BR. (2012). Koda-Kimble and Young’s applied therapeutics: The clinical use of drugs (K. W Ed. 10th edition ed.): Lippincott Wil- liams & Wilkins.
  • Angioi, A., Floris, M., Lepori, N., Bianco, P., Cabiddu, G., & Pani, A. (2021). Extensive proximal tubular necrosis without recovery fol- lowing the ingestion of Amanita phalloides: a case report. Journal of nephrology, 34(6), 2137-2140. doi:https://10.1007/s40620-021- 01018-w
  • Arima, Y., Hirota, T., Bronner, C., Mousli, M., Fujiwara, T., Niwa, S.-i.,. . . Saya, H. (2004). Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes to Cells, 9(2), 131-142. doi:https://doi.org/10.1111/j.1356- 9597.2004.00710.x
  • Arima, Y., Nitta, M., Kuninaka, S., Zhang, D., Fujiwara, T., Taya, Y., .. . Saya, H. (2005). Transcriptional blockade induces p53-depen- dent apoptosis associated with translocation of p53 to mito- chondria. Journal of Biological Chemistry, 280(19), 19166-19176. doi:https://10.1074/jbc.M410691200
  • Barbosa, I. A., Machado, N. G., Skildum, A. J., Scott, P. M., & Oliveira, P. J. (2012). Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochimica et Biophysica Acta, 1826(1), 238-254. doi:https://10.1016/j.bbcan.2012.04.005
  • Becker, C. E., Tong, T. G., Boerner, U., Roe, R. L., Sco, T. A., MacQuar- rie, M. B., & Bartter, F. (1976). Diagnosis and treatment of Amanita phalloides-type mushroom poisoning: use of thioctic acid. West- ern Journal of Medicine, 125(2), 100-109.
  • Enjalbert, F., Rapior, S., Nouguier-Soulé, J., Guillon, S., Amouroux, N., & Cabot, C. (2002). Treatment of amatoxin poisoning: 20-year retrospective analysis. Journal of Clinical Toxicology, 40(6), 715-757. doi:https://10.1081/clt-120014646
  • Escudié, L., Francoz, C., Vinel, J. P., Moucari, R., Cournot, M., Para- dis, V., . . . Durand, F. (2007). Amanita phalloides poisoning: reas- sessment of prognostic factors and indications for emergency liver transplantation. Journal of Hepatology, 46(3), 466-473. doi:https://10.1016/j.jhep.2006.10.013
  • Faulstich, H., Talas, A., & Wellhöner, H. H. (1985). Toxicokinetics of labeled amatoxins in the dog. Archives of Toxicology, 56(3), 190- 194. doi:https://10.1007/bf00333425
  • Fineschi, V., Di Paolo, M., & Centini, F. (1996). Histological criteria for diagnosis of amanita phalloides poisoning. Journal of Forensic Sciences, 41(3), 429-432.
  • Ganzert, M., Felgenhauer, N., & Zilker, T. (2005). Indication of liver transplantation following amatoxin intoxication. Journal of Hepa- tology, 42(2), 202-209. doi:https://10.1016/j.jhep.2004.10.023
  • Garcia, J., Costa, V. M., Carvalho, A. T., Silvestre, R., Duarte, J. A., Dourado, D. F., . . . Carvalho, F. (2015). A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Archives of Toxicology, 89(12), 2305-2323. doi:https://10.1007/ s00204-015-1582-x
  • Jan, M. A., Siddiqui, T. S., Ahmed, N., Ul Haq, I., & Khan, Z. (2008). Mushroom poisoning in children: clinical presentation and out- come. Journal of Ayub Medical College Abbottabad, 20(2), 99-101.
  • Karlson-Stiber, C., & Persson, H. (2003). Cytotoxic fungi--an overview. Toxicon, 42(4), 339-349. doi:https://10.1016/s0041-0101(03)00238-1
  • Kaya E, H. M., Karahan S, Bayram S, Yaykaşlı KO, Sürmen MG. (2012). Thermostability of Alpha Amanitin in Water and Methanol. Euro- pean Journal of Basic Medical Sciences, 2(4), 106-111. doi:https:// doi.org/10.21601/ejbms/9189
  • Kaya, E., Karahan, S., Bayram, R., Yaykasli, K. O., Colakoglu, S., & Sari- tas, A. (2015). Amatoxin and phallotoxin concentration in Amani- ta phalloides spores and tissues. Toxicology and Industrial Health, 31(12), 1172-1177. doi:https://10.1177/0748233713491809
  • Kaya, E., Surmen, M. G., Yaykasli, K. O., Karahan, S., Oktay, M., Turan, H., . . . Erdem, H. (2014). Dermal absorption and toxicity of alpha amanitin in mice. Cutaneous and Ocular Toxicology, 33(2), 154-160. doi:10.3109/15569527.2013.802697
  • Kaya, E., Yilmaz, I., Admis, O., Oktay, M., Bayram, R., Bakirci, S., . .. Colakoglu, S. (2016). Effects of erdosteine on alpha amanitin- induced hepatotoxicity in mice. Toxin Reviews, 35(1-2), 4-9. doi:htt ps://10.1080/15569543.2016.1178146
  • Kaya, E., Yilmaz, I., Sinirlioglu, Z. A., Karahan, S., Bayram, R., Yaykasli, K. O., . . . Severoglu, Z. (2013). Amanitin and phallotoxin concen- tration in Amanita phalloides var. alba mushroom. Toxicon, 76, 225-233. doi:https://10.1016/j.toxicon.2013.10.008
  • Leist, M., Gantner, F., Naumann, H., Bluethmann, H., Vogt, K., Brige- lius-Flohé, R., . . . Wendel, A. (1997). Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology, 112(3), 923-934. doi:https://10.1053/gast.1997. v112.pm9041255
  • Li, Y., Xi, Y., Tao, G., Xu, G., Yang, Z., Fu, X., . . . Jiang, T. (2020). Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway. International Immunopharmacol- ogy, 83, 106386. doi:https://10.1016/j.intimp.2020.106386
  • Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G., & Rutter, W. J. (1970). Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science, 170(3956), 447-449. doi:https://10.1126/ science.170.3956.447
  • Magdalan, J., Ostrowska, A., Piotrowska, A., Gomułkiewicz, A., Podhorska-Okołów, M., Patrzałek, D., . . . Dziegiel, P. (2010). Ben- zylpenicillin, acetylcysteine and silibinin as antidotes in human hepatocytes intoxicated with alpha-amanitin. Experimental and Toxicologic Pathology, 62(4), 367-373. doi:https://10.1016/j. etp.2009.05.003
  • Magdalan, J., Ostrowska, A., Piotrowska, A., Izykowska, I., Nowak, M., Gomułkiewicz, A., . . . Dziegiel, P. (2010). alpha-Amanitin in- duced apoptosis in primary cultured dog hepatocytes. Folia Histochemica et Cytobiologica, 48(1), 58-62. doi:https://10.2478/ v10042-010-0010-6
  • Magdalan, J., Piotrowska, A., Gomułkiewicz, A., Sozański, T., Podhorska-Okołów, M., Szeląg, A., & Dzięgiel, P. (2011). Ben- zylpenicyllin and acetylcysteine protection from α-amanitin- induced apoptosis in human hepatocyte cultures. Experimental and Toxicologic Pathology, 63(4), 311-315. doi:https://10.1016/j. etp.2010.02.004
  • McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology, 5(4), a008656-a008656. doi:https://10.1101/cshperspect.a008656
  • Park, R., Choi, W. G., Lee, M. S., Cho, Y. Y., Lee, J. Y., Kang, H. C., . . . Lee, H. S. (2021). Pharmacokinetics of α-amanitin in mice us- ing liquid chromatography-high resolution mass spectrometry and in vitro drug-drug interaction potentials. Journal of Toxicol- ogy and Environmental Health, Part A, 84(20), 821-835. doi:htt ps://10.1080/15287394.2021.1944942
  • Pišlar, A., Sabotič, J., Šlenc, J., Brzin, J., & Kos, J. (2016). Cytotoxic L-amino-acid oxidases from Amanita phalloides and Clitocybe geotropa induce caspase-dependent apoptosis. Cell Death Dis- covery, 2(1), 16021. doi:https://10.1038/cddiscovery.2016.21
  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101-1108. doi:https://10.1038/nprot.2008.73
  • Serné, E. H., Toorians, A. W., Gietema, J. A., Bronsveld, W., Haags- ma, E. B., & Mulder, P. O. (1996). Amanita phalloides, a poten- tially lethal mushroom: its clinical presentation and therapeutic options. Netherlands Journal of Medicine, 49(1), 19-23. doi:htt ps://10.1016/0300-2977(95)00096-8
  • Smith, M. R., & Davis, R. L. (2016). Mycetismus: a review. Gastroen- terology Report (Oxford), 4(2), 107-112. doi:https://10.1093/gastro/ gov062
  • Tiegs, G., & Horst, A. K. (2022). TNF in the liver: targeting a central player in inflammation. Seminars in Immunopathology, 44(4), 445- 459. doi:10.1007/s00281-022-00910-2
  • Tong, T. C., Hernandez, M., Richardson, W. H., 3rd, Betten, D. P., Favata, M., Riffenburgh, R. H., . . . Tanen, D. A. (2007). Compara- tive treatment of alpha-amanitin poisoning with N-acetylcys- teine, benzylpenicillin, cimetidine, thioctic acid, and silybin in a murine model. Annals of Emergency Medicine, 50(3), 282-288. doi:https://10.1016/j.annemergmed.2006.12.015
  • Vetter, J. (1998). Toxins of Amanita phalloides. Toxicon, 36(1), 13-24. doi:https://10.1016/s0041-0101(97)00074-3
  • Wang, M., Chen, Y., Guo, Z., Yang, C., Qi, J., Fu, Y., . . . Wang, Y. (2018). Changes in the mitochondrial proteome in human hepatocytes in response to alpha-amanitin hepatotoxicity. Toxicon, 156, 34-40. doi:https://10.1016/j.toxicon.2018.11.002
  • Wieland, T. (1983). The toxic peptides from Amanita mushrooms. International Journal of Peptide Research, 22(3), 257-276. doi:https: //10.1111/j.1399-3011.1983.tb02093.x
  • Wieland, T., & Faulstich, H. (1978). Amatoxins, phallotoxins, phal- lolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Critical Reviews in Biochem- istry, 5(3), 185-260. doi:https://10.3109/10409237809149870
  • Yilmaz, I., Ermis, F., Akata, I., & Kaya, E. (2015). A Case Study: What Doses of Amanita phalloides and Amatoxins Are Lethal to Hu- mans? Wilderness & Environmental Medicine, 26(4), 491-496. doi:https://10.1016/j.wem.2015.08.002
  • Zhang, C., Wang, C., Tang, S., Sun, Y., Zhao, D., Zhang, S., . . . Xiao, X. (2013). TNFR1/TNF-α and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food and Chemical Toxicology, 62, 825-838. doi:https://doi. org/10.1016/j.fct.2013.10.022
  • Zhao, J., Cao, M., Zhang, J., Sun, Q., Chen, Q., & Yang, Z. R. (2006). Pathological effects of the mushroom toxin alpha-amanitin on BALB/c mice. Peptides, 27(12), 3047-3052. doi:https://10.1016/j. peptides.2006.08.015
  • Zhou, H. Q., Liu, W., Wang, J., Huang, Y. Q., Li, P. Y., Zhu, Y., . . . Zhao, Y. L. (2017). Paeoniflorin attenuates ANIT-induced cholestasis by in- hibiting apoptosis in vivo via mitochondria-dependent pathway. Biomedicine & Pharmacotherapy, 89, 696-704. doi:https://10.1016/j. biopha.2017.02.084
There are 41 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Health Care Administration
Journal Section Original Article
Authors

Selim Karahan 0000-0001-5784-7091

Zehra Atli 0000-0001-8428-6779

Ertuğrul Kaya 0000-0003-0081-682X

Feride Özdemir 0000-0003-1327-9146

Mehmet Boğa 0000-0003-4163-9962

Sevcan İzgi 0000-0002-8799-2043

Project Number DUBAP:DUSAM.21.002
Publication Date December 30, 2022
Submission Date June 27, 2022
Published in Issue Year 2022 Volume: 52 Issue: 3

Cite

APA Karahan, S., Atli, Z., Kaya, E., Özdemir, F., et al. (2022). Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice. İstanbul Journal of Pharmacy, 52(3), 281-288. https://doi.org/10.26650/IstanbulJPharm.2022.1136288
AMA Karahan S, Atli Z, Kaya E, Özdemir F, Boğa M, İzgi S. Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice. iujp. December 2022;52(3):281-288. doi:10.26650/IstanbulJPharm.2022.1136288
Chicago Karahan, Selim, Zehra Atli, Ertuğrul Kaya, Feride Özdemir, Mehmet Boğa, and Sevcan İzgi. “Gene Expression Profiles for Apoptotic and Necrotic Pathways During Amanita Phalloides Intoxication in Mice”. İstanbul Journal of Pharmacy 52, no. 3 (December 2022): 281-88. https://doi.org/10.26650/IstanbulJPharm.2022.1136288.
EndNote Karahan S, Atli Z, Kaya E, Özdemir F, Boğa M, İzgi S (December 1, 2022) Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice. İstanbul Journal of Pharmacy 52 3 281–288.
IEEE S. Karahan, Z. Atli, E. Kaya, F. Özdemir, M. Boğa, and S. İzgi, “Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice”, iujp, vol. 52, no. 3, pp. 281–288, 2022, doi: 10.26650/IstanbulJPharm.2022.1136288.
ISNAD Karahan, Selim et al. “Gene Expression Profiles for Apoptotic and Necrotic Pathways During Amanita Phalloides Intoxication in Mice”. İstanbul Journal of Pharmacy 52/3 (December 2022), 281-288. https://doi.org/10.26650/IstanbulJPharm.2022.1136288.
JAMA Karahan S, Atli Z, Kaya E, Özdemir F, Boğa M, İzgi S. Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice. iujp. 2022;52:281–288.
MLA Karahan, Selim et al. “Gene Expression Profiles for Apoptotic and Necrotic Pathways During Amanita Phalloides Intoxication in Mice”. İstanbul Journal of Pharmacy, vol. 52, no. 3, 2022, pp. 281-8, doi:10.26650/IstanbulJPharm.2022.1136288.
Vancouver Karahan S, Atli Z, Kaya E, Özdemir F, Boğa M, İzgi S. Gene expression profiles for apoptotic and necrotic pathways during Amanita phalloides intoxication in mice. iujp. 2022;52(3):281-8.