Research Article
BibTex RIS Cite

Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress

Year 2023, Volume: 53 Issue: 2, 159 - 165, 30.08.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1054752

Abstract

Background and Aims: The potential effects of perfluorooctane sulfonate (PFOS) on the environment and human health have aroused great concerns in recent years. To our knowledge, there are limited studies related with the effect of curcumin on PFOS induced damage in the literature. The existing studies are focused on DNA damage. No study has been found examining the effect on the antioxidant system. We planned this study to investigate the impact of curcumin on the antioxidant defense system response in rats exposed to PFOS.
Methods: The animals were divided into six groups, with the first group used as control. Groups II to VI were orally treated with curcumin (80 mg/kg), PFOS (1.25 mg/kg), PFOS (1.25 mg/kg) + curcumin, PFOS (2.5 mg/kg), and PFOS (2.5 mg/kg) + curcumin daily for 30 days, respectively. For oxidative stress, liver, kidney, and brain samples were homogenized. The activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content were determined. Data from the experiments were statistically analyzed by SPSS 11.0 program.
Results: Our data showed that PFOS increased MDA level, while the activities of SOD and CAT decreased. It was observed that the application of curcumin together with PFOS decreased the MDA level and increased the antioxidant enzyme activities.
Conclusion: As an antioxidant, curcumin plays an important protective role against oxidative damage and inhibits PFOS-induced lipid peroxidation.

References

  • Aebi, H. (1984). Catalase in vitro. Methods in enzymology. 105, 121 126. https://doi.org/10.1016/s0076-6879(84)05016-3 google scholar
  • Abudayyak, M., Öztaş, E., & Özhan, G. (2021). Determination of Per-flourooctanoic Acid Toxicity in a Human Hepatocarcinoma. Cell Line. Health Pollut. 11(31), 210909. https://doi.org/10.5696/2156-9614-11.31.210909. google scholar
  • Agarwal, B.A., Jain, S., Agarwal, N.K., Mediratta, P.K., & Sharma, K.K. (2011). Modulation of pentylenetetrazole-induced kindling and oxidative stress by curcumin in mice. Phytomedicine, 18(8-9), 756759. https://doi.org/10.1016/j.phymed.2010.11.007 google scholar
  • AL-Harbi, M.S., Hamza, R.Z., & Dwary, A.A. (2014). Ameliorative effect of selenium and curcumin on sodium fluoride induced hepatotoxicity and oxidative stress in male mice. Journal of Chemical and Pharmaceutical Research, 6(4), 984-998. https://doi. org/10.1016/S2222-1808(14)60771-4 google scholar
  • Adonaylo, V.N., & Oteiza, P.I. (1999). Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology, 135(2-3), 77-85. https://doi.org/10.1016/S0300-483X(99)00051-7 google scholar
  • Beesoon, S., & Martin, J.W. (2015). Isomer-specific binding affin-ity of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to serum proteins. Environmental Science & Technology, 49 (9), 5722-5731. https://doi.org/10.1021/es505399w google scholar
  • Bright, J.J. (2007). Curcumin and autoimmune disease. Advances in Experimental Medicine and Biology, 595, 425-51. https://doi. org/10.1007/978-0-387-46401-5_19 google scholar
  • Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hog-strand, C,... Schwerdtle, T. (2018). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluoroocta-noic acid in food. European Food Safety Authority Journal, 16 (12), e05194. https://doi.org/10.2903/j.efsa.2018.5194 google scholar
  • Comporti, M. (1989). Three models of free radical-induced cell injury. Chemico- Biological Interactions, 72(1-2), 1-56. https://doi. org/10.1016/0009-2797(89)90016-1 google scholar
  • Dai, C., Tang, S., Li, D., Zhao, K., & Xiao, X. (2015). Curcumin attenu-ates quinocetone- induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Toxicology Mechanisms and Meth-ods, 25(4), 340-346. https://doi.org/10.3109/15376516.2015.1045 659 google scholar
  • Damiano, S., Longobardi, C., Andretta, E., Prisco, F., Piegari, G., Squillacioti, C.,...Ciarcia, R. (2021). Antioxidative effects of cur-cumin on the hepatotoxicity ınduced by ochratoxin a in rats. Antioxidants, 10(1), 125. https://doi.org/10.3390/antiox10010125 google scholar
  • Dikmen, M., Kaya-Tilki, E., Engur, S., & Ozturk, Y. (2017). Neuritogen-ic activity of epigallocatechin gallate and curcumin combination on rat adrenal pheochromocytoma cells. Fresenius Environmental Bulletin, 26(7), 4726-4733. google scholar
  • Dhore, R., & Murthy, G.S. (2021). Per/polyfluoroalkyl substances production, applications and environmental impacts. Bio-resource Technology, 341, 125808. https://doi.org/10.1016/j. biortech.2021.125808 google scholar
  • Dorts, J., Kestemont, P,, Marchand, PA, D’Hollander, W., Thezenas, M. L., Raes, M., & Silvesre, F. (2011). Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooc-tane sulfonate (PFOS). Aquatic Toxicology, 103(1-2), 1-8. https:// doi.org/10.1016/j.aquatox.2011.01.015 google scholar
  • Edrees, N.E., Galal, A.A.A., Monaem, A.R.A., Beheiry, R.R., & Met-wally, M.M.M. (2008). Curcumin alleviates colistin-induced neph-rotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chemico-Biological Interac-tions, 294, 56-64. https://doi.org/10.1016/j.cbi.2018.08.012 google scholar
  • Eke, D., & Çelik, A. (2016). Curcumin prevents perfluorooctane sulfonate induced genotoxicity and oxidative DNA damage in rat peripheral blood. Drug and Chemical Toxicology, 39(1), 97-103. https://doi.org/10.3109/01480545.2015.1041601 google scholar
  • El-Hack, M.E.A., El-Saadony, M.T, Swelum, A.A., Arif, M., Ghanima, M.M.A., Shukry, M., Noreldin, A., Taha, AE., & El-Tarabilyi, K.A. (2021). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101, 5747-762. https://doi. org/10.1002/jsfa.11372 google scholar
  • Endirlik, B., & Gürbay, A. (2018). Perflorooktanoik asit: Maruziyet yolları, toksikokinetik özellikleri ve insan sağlığı üzerindeki etkileri. Journal of Pharmacetical Sciences, 43(2), 135-156. google scholar
  • Eybl, V., Kotyzova, D., & Bludovska, M. (2004). The effect of curcum-in on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicology Letters, 151(1),79-85. https://doi.org/10.1016/j.toxlet.2004.02.019 google scholar
  • Farzaei, M.H., Zobeiri, M., Parvizi, F., El-Senduny, F. F., Marmouzi, I., Coy-Barrera, E.,...Abdollahi, M . (2018). Curcumin in Liver Diseas-es: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7), 855. https://doi. org/10.3390/nu10070855 google scholar
  • Fu, Y., Zheng, S., Lin, J., Ryerse, J., & Chen, A. (2008). Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology,73(2), 399-409. https://doi.org/10.1124/ mol.107.039818 google scholar
  • Garda-Nino, W.R., & Pedraza-Chavem, J. (2014). Protective effect of cur-cumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69, 182-201. https://doi.org/10.1016/j.fct.2014.04.016 google scholar
  • Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L., Leblanc, J.C., Nebbia, C.S., Nielsen, E.,.Schwerdtle T. (2020) Risk to human 164 health related to the presence of perfluoroalkyl substances in food. European Food Safety Authority Journal, 18(9), 6223. https:// doi.org/10.2903/j.efsa.2020.6223 google scholar
  • Hosseini, A., & Hosseinzadeh, H. (2018), Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, cur-cumin, against natural and chemical toxicities: A review. Biomedi-cine & Pharmacotherapy, 99, 411-421. https://doi.org/10.1016/j. biopha.2018.01.072 google scholar
  • Kanwal, Z., Raza, M. A., Manzoor, F., Riaz, S., Jabeen, G., Fatima, S., & Naseem, S. (2019). A Comparative Assessment of Nanotoxicity Induced by Metal (Silver, Nickel) and Metal Oxide (Cobalt, Chro-mium) Nanoparticles in Labeo rohita. Nanomaterials (Basel), 9(2), 309. https://doi.org/10.3390/nano9020309 google scholar
  • Lee, YC.G., Chou, HC., Chen, YT., Tung, SY., Ko, TL., Buyandelger B., Wen, LL., & Juan, SH. (2022). L-Carnitine reduces reactive oxy-gen species/endoplasmic reticulum stress and maintains mito-chondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Scientifc Reports, 12, 4673 https://doi.org/10.1038/s41598-022-08771-3 google scholar
  • Long, Y., Wang, Y., Ji, G., Yan, L., Hu, F., & Gu, A. (2013). Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice. PLoS One, 8(1): e54176. https://doi.org/10.1371/journal.pone.0054176 google scholar
  • Lopez-Doval, S., Salgado, R., Pereiro, N., Moyano, R., & Lafuente, A. (2014). Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environmental Research, 134, 158-168. https:// doi.org/ 10.1016/j.envres.2014.07.006. google scholar
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/ S0021-9258(19)52451-6 google scholar
  • Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: A short review. Life Sci-ences, 78(18), 2081-2087. https://doi.org/10.1016/j.lfs.2005.12.007 google scholar
  • Mandour, D. A., Maher, I., Abd El, M. A., & Moawad, R. S. (2022). Quercetin ameliorated Perfluorooctane Sulphonate-Induced he-patic toxicity in adult male albino rats (biochemical, histological and immunohistochemical study). Egyptian Journal of Histology. (in press). https://doi.org/10.21608/ejh.2022.1391.1685 google scholar
  • Moghaddam, A. H., Nabavi, S. F., Nabavi, S. M., Loizzo, M. R., Rooh-bakhsh, A., & Setzer, W.N. (2015). Ameliorative effects of curcumin against sodium fluoride induced hepatotoxicity. Progress in Nutri-tion, 17(4), 324-330. google scholar
  • Pachkowski, B., Post, G. B., & Stern, A. H. (2019). The derivation of a Reference Dose (RfD) for perfluorooctane sulfonate (PFOS) based on immune suppression. Environmental Research, 171, 452-469. doi: 10.1016/j.envres.2018.08.004. google scholar
  • Park, E. J., Jeon, C. H., Ko, G., Kim, J., & Sohn, D. H. (2000). Protective effect of curcumin in rat liver injury induced by carbon tetrachlo-ride. The Journal of Pharmacy and Pharmacology, 52(4), 437-440. https://doi.org/10.1211/0022357001774048 google scholar
  • Rathore, S., Mukim, M., Sharma, P., Devi, S., Nagar, J. C., & Khalid, M. (2020). Curcumin: A Review for Health Benefits Kingdom of Saudi Arabia. International Journal of Research and Review, 7 (1), 273-290. google scholar
  • Reyes-Gordillo, K., Segovia, J., Shibayama, M., Vergara, P., Moreno, M. G., & Muriel, P. (2007). Curcumin protects against acute liver damage in the rat by inhibiting NF-kB, proinflammatory cytokines production and oxidative stress. Biochimica et Biophysica Acta, 1770 (6), 989-996. https://doi.org/10.1016/j.bbagen.2007.02.004 google scholar
  • Qin, W.,Ren, X., Zhao, L., Guo L. (2022). Exposure to perfluorooc-tanesulfonate reduced cell viability and insulin release capacity of p cells. Journal of Environmental Sciences, 1 15, 162-172. https:// doi.org/10.1016/j.jes.2021.07.004 google scholar
  • Qin X. D., Qian Z., Dharmage S. C., Perret J., Geiger S. E., Rigdon S.,.Dong G. H. (2017). Association of perfluoroalkyl substances exposure with impaired lung function in children.Environmental Research, 155, 15-21. https://doi.org/10.1016/j.envres.2017.01.025 google scholar
  • Saikat, S., Kreis, I., Davies, B., Bridgman, S., & Kamanyire, R. (2013). The impact of PFOS on health in the general population: a re-view. Environmental Science: Processes & Impacts 5(2), 329-35. doi: 10.1039/c2em30698k. google scholar
  • Sankar, P., Telang, A.G., & Manimaran, A. (2018). Protective effect of curcumin on cypermethrin-induced oxidative stress in Wistar rats. Nutrients, 64(5), 487-493. https://doi.org/10.3390/nu10070855 google scholar
  • Singh, R., & Sharma, P. (2011). Hepatoprotective effect of curcumin on lindane-induced oxidative stress in male Wistar Rats. Toxicol-ogy International, 18(2), 124-129. https://doi.org/10.4103/0971-6580.84264 google scholar
  • Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497-500. google scholar
  • Tang, L., Yu, J., Zhuge, S., Chen, H., Zhang, L., & Jiang, G. (2022). Oxidative stress and Cx43-mediated apoptosis are involved in PFOS-induced nephrotoxicity, Toxicology, 478, 153283. https:// doi.org/10.1016/j.tox.2022.153283 google scholar
  • Tapia, E., Sanchez-Lozada, L. G., Garcia-Nino, W. R., Garcia, E., Ce-recedo, A., Garcia-Arroyo, F. E,...Pedraza-Chaverr(, J. (2014). Cur-cumin prevents maleate-induced nephrotoxicity: Relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption, and activity of respiratory complex I. Free Radical Research, 48(11), 1342-1354. https://doi.org/10.3109/10715762.2 014.954109 google scholar
  • Tsuda, S. (2016). Differential toxicity between perfluorooc-tane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The Journal of Toxicological Sciences, 41(Special), 27-36. https://doi. org/10.2131/jts.41.SP27 google scholar
  • Torres, L., Redko, A., Limper, C., Imbiakha, B., Chang, S., & August, A. (2021). Effect of Perfluorooctanesulfonic acid (PFOS) on immune cell development and function in mice. Immunology Letters, 233, 31-41. https://doi.org/10.1016/j.imlet.2021.03.006 google scholar
  • Wang, G., Sun, S., Wu, X., Yang, S., Wu, Y., Zhao, J., Zhang, H., Chen W. (2020). Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. Ecotoxicology and Environmental Safety, 197 110590. https://doi. org/10.1016/j.ecoenv.2020.110590 google scholar
  • Wang, P., Liu, D., Yan, S., Cui, J., Liang, Y., & Ren, S. (2022). Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms. Toxics, 10(5), 265. doi: 10.3390/toxics10050265. google scholar
  • Wen, L., Chen, YT., Lee, YC. G., Ko, TL, Chou, H-C., & Juan, SH. (2021). Perfluorooctane sulfonate induces autophagy-associated apop-tosis through oxidative stress and the activation of extracellular signal-regulated kinases in renal tubular cells. PLoS ONE 16 (1): e0245442. https://doi.org/10.1371/journal.pone.0245442 google scholar
  • Wiels0e, M., Long, M. H., Ghisari, M., & Bonefeld-Jorgensen, E. C. (2015). Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere, 129, 239-245, 10.1016/j. chemosphere.2014.10.014 google scholar
  • Xing, J., Wang, G., Zhao, J., Wang, E., Yin, B., Fang, D.,...Chen, W. (2016). Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environ-mental Pollution, 210, 388-396. https://doi.org/10.1016/j.en-vpol.2015.12.008 google scholar
  • Xu, C., Jiang, Z. Y., Liu, Q., Liu, H., & Gu, A. (2017). Estrogen recep-tor beta mediates hepatotoxicity induced by perfluorooctane sulfonate in Mouse. Environmental Science and Pollution Research, 24, 13414-13423. https://doi.org/10.1007/s11356-017-8943-3. google scholar
  • Xu, D., Li, C., Wen, Y., & Liu, W. (2013). Antioxidant defense system responses and DNA damage of earthworms exposed to Perfluo-rooctane sulfonate (PFOS). Environmental Pollution, 174, 121-127. https://doi.org/10.1016/j.envpol.2012.10.030 google scholar
  • Xu, X.Y., Meng, X., Li, S., Gan, R.Y., Li, Y., & Li, H.B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10(10), 1553. https://doi.org/10.3390/nu10101553 google scholar
  • Yagi, K., Nishigaki, I., & Ohama, H. (1968). Measurement of serum TBA value. Vitamin, 37, 105-112. google scholar
  • Zheng, L, Dong, G. H., Jin, Y. H., & He, Q. C. (2009). Immunotoxic changes associated with a 7-day oral exposure to perfluorooc-tanesulfonate (PFOS) in adult male C57BL/6 mice. Archives of Toxi-cology, 83(7):679-89. https://doi.org/10.1007/s00204-008-0361-3. google scholar
  • Zhang, L., Lei, C., Chen, J., Yang, K., Zhu, L., & Lin, D. (2015). Effect of natural and synthetic surface coatings on the toxicity of mul-tiwalled carbon nanotubes toward green algae. Carbon, 83, 198207, 10.1016/j.carbon.2014.11.050 google scholar
Year 2023, Volume: 53 Issue: 2, 159 - 165, 30.08.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1054752

Abstract

References

  • Aebi, H. (1984). Catalase in vitro. Methods in enzymology. 105, 121 126. https://doi.org/10.1016/s0076-6879(84)05016-3 google scholar
  • Abudayyak, M., Öztaş, E., & Özhan, G. (2021). Determination of Per-flourooctanoic Acid Toxicity in a Human Hepatocarcinoma. Cell Line. Health Pollut. 11(31), 210909. https://doi.org/10.5696/2156-9614-11.31.210909. google scholar
  • Agarwal, B.A., Jain, S., Agarwal, N.K., Mediratta, P.K., & Sharma, K.K. (2011). Modulation of pentylenetetrazole-induced kindling and oxidative stress by curcumin in mice. Phytomedicine, 18(8-9), 756759. https://doi.org/10.1016/j.phymed.2010.11.007 google scholar
  • AL-Harbi, M.S., Hamza, R.Z., & Dwary, A.A. (2014). Ameliorative effect of selenium and curcumin on sodium fluoride induced hepatotoxicity and oxidative stress in male mice. Journal of Chemical and Pharmaceutical Research, 6(4), 984-998. https://doi. org/10.1016/S2222-1808(14)60771-4 google scholar
  • Adonaylo, V.N., & Oteiza, P.I. (1999). Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology, 135(2-3), 77-85. https://doi.org/10.1016/S0300-483X(99)00051-7 google scholar
  • Beesoon, S., & Martin, J.W. (2015). Isomer-specific binding affin-ity of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to serum proteins. Environmental Science & Technology, 49 (9), 5722-5731. https://doi.org/10.1021/es505399w google scholar
  • Bright, J.J. (2007). Curcumin and autoimmune disease. Advances in Experimental Medicine and Biology, 595, 425-51. https://doi. org/10.1007/978-0-387-46401-5_19 google scholar
  • Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hog-strand, C,... Schwerdtle, T. (2018). Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluoroocta-noic acid in food. European Food Safety Authority Journal, 16 (12), e05194. https://doi.org/10.2903/j.efsa.2018.5194 google scholar
  • Comporti, M. (1989). Three models of free radical-induced cell injury. Chemico- Biological Interactions, 72(1-2), 1-56. https://doi. org/10.1016/0009-2797(89)90016-1 google scholar
  • Dai, C., Tang, S., Li, D., Zhao, K., & Xiao, X. (2015). Curcumin attenu-ates quinocetone- induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Toxicology Mechanisms and Meth-ods, 25(4), 340-346. https://doi.org/10.3109/15376516.2015.1045 659 google scholar
  • Damiano, S., Longobardi, C., Andretta, E., Prisco, F., Piegari, G., Squillacioti, C.,...Ciarcia, R. (2021). Antioxidative effects of cur-cumin on the hepatotoxicity ınduced by ochratoxin a in rats. Antioxidants, 10(1), 125. https://doi.org/10.3390/antiox10010125 google scholar
  • Dikmen, M., Kaya-Tilki, E., Engur, S., & Ozturk, Y. (2017). Neuritogen-ic activity of epigallocatechin gallate and curcumin combination on rat adrenal pheochromocytoma cells. Fresenius Environmental Bulletin, 26(7), 4726-4733. google scholar
  • Dhore, R., & Murthy, G.S. (2021). Per/polyfluoroalkyl substances production, applications and environmental impacts. Bio-resource Technology, 341, 125808. https://doi.org/10.1016/j. biortech.2021.125808 google scholar
  • Dorts, J., Kestemont, P,, Marchand, PA, D’Hollander, W., Thezenas, M. L., Raes, M., & Silvesre, F. (2011). Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooc-tane sulfonate (PFOS). Aquatic Toxicology, 103(1-2), 1-8. https:// doi.org/10.1016/j.aquatox.2011.01.015 google scholar
  • Edrees, N.E., Galal, A.A.A., Monaem, A.R.A., Beheiry, R.R., & Met-wally, M.M.M. (2008). Curcumin alleviates colistin-induced neph-rotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chemico-Biological Interac-tions, 294, 56-64. https://doi.org/10.1016/j.cbi.2018.08.012 google scholar
  • Eke, D., & Çelik, A. (2016). Curcumin prevents perfluorooctane sulfonate induced genotoxicity and oxidative DNA damage in rat peripheral blood. Drug and Chemical Toxicology, 39(1), 97-103. https://doi.org/10.3109/01480545.2015.1041601 google scholar
  • El-Hack, M.E.A., El-Saadony, M.T, Swelum, A.A., Arif, M., Ghanima, M.M.A., Shukry, M., Noreldin, A., Taha, AE., & El-Tarabilyi, K.A. (2021). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101, 5747-762. https://doi. org/10.1002/jsfa.11372 google scholar
  • Endirlik, B., & Gürbay, A. (2018). Perflorooktanoik asit: Maruziyet yolları, toksikokinetik özellikleri ve insan sağlığı üzerindeki etkileri. Journal of Pharmacetical Sciences, 43(2), 135-156. google scholar
  • Eybl, V., Kotyzova, D., & Bludovska, M. (2004). The effect of curcum-in on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicology Letters, 151(1),79-85. https://doi.org/10.1016/j.toxlet.2004.02.019 google scholar
  • Farzaei, M.H., Zobeiri, M., Parvizi, F., El-Senduny, F. F., Marmouzi, I., Coy-Barrera, E.,...Abdollahi, M . (2018). Curcumin in Liver Diseas-es: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7), 855. https://doi. org/10.3390/nu10070855 google scholar
  • Fu, Y., Zheng, S., Lin, J., Ryerse, J., & Chen, A. (2008). Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology,73(2), 399-409. https://doi.org/10.1124/ mol.107.039818 google scholar
  • Garda-Nino, W.R., & Pedraza-Chavem, J. (2014). Protective effect of cur-cumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69, 182-201. https://doi.org/10.1016/j.fct.2014.04.016 google scholar
  • Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L., Leblanc, J.C., Nebbia, C.S., Nielsen, E.,.Schwerdtle T. (2020) Risk to human 164 health related to the presence of perfluoroalkyl substances in food. European Food Safety Authority Journal, 18(9), 6223. https:// doi.org/10.2903/j.efsa.2020.6223 google scholar
  • Hosseini, A., & Hosseinzadeh, H. (2018), Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, cur-cumin, against natural and chemical toxicities: A review. Biomedi-cine & Pharmacotherapy, 99, 411-421. https://doi.org/10.1016/j. biopha.2018.01.072 google scholar
  • Kanwal, Z., Raza, M. A., Manzoor, F., Riaz, S., Jabeen, G., Fatima, S., & Naseem, S. (2019). A Comparative Assessment of Nanotoxicity Induced by Metal (Silver, Nickel) and Metal Oxide (Cobalt, Chro-mium) Nanoparticles in Labeo rohita. Nanomaterials (Basel), 9(2), 309. https://doi.org/10.3390/nano9020309 google scholar
  • Lee, YC.G., Chou, HC., Chen, YT., Tung, SY., Ko, TL., Buyandelger B., Wen, LL., & Juan, SH. (2022). L-Carnitine reduces reactive oxy-gen species/endoplasmic reticulum stress and maintains mito-chondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Scientifc Reports, 12, 4673 https://doi.org/10.1038/s41598-022-08771-3 google scholar
  • Long, Y., Wang, Y., Ji, G., Yan, L., Hu, F., & Gu, A. (2013). Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice. PLoS One, 8(1): e54176. https://doi.org/10.1371/journal.pone.0054176 google scholar
  • Lopez-Doval, S., Salgado, R., Pereiro, N., Moyano, R., & Lafuente, A. (2014). Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environmental Research, 134, 158-168. https:// doi.org/ 10.1016/j.envres.2014.07.006. google scholar
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/ S0021-9258(19)52451-6 google scholar
  • Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: A short review. Life Sci-ences, 78(18), 2081-2087. https://doi.org/10.1016/j.lfs.2005.12.007 google scholar
  • Mandour, D. A., Maher, I., Abd El, M. A., & Moawad, R. S. (2022). Quercetin ameliorated Perfluorooctane Sulphonate-Induced he-patic toxicity in adult male albino rats (biochemical, histological and immunohistochemical study). Egyptian Journal of Histology. (in press). https://doi.org/10.21608/ejh.2022.1391.1685 google scholar
  • Moghaddam, A. H., Nabavi, S. F., Nabavi, S. M., Loizzo, M. R., Rooh-bakhsh, A., & Setzer, W.N. (2015). Ameliorative effects of curcumin against sodium fluoride induced hepatotoxicity. Progress in Nutri-tion, 17(4), 324-330. google scholar
  • Pachkowski, B., Post, G. B., & Stern, A. H. (2019). The derivation of a Reference Dose (RfD) for perfluorooctane sulfonate (PFOS) based on immune suppression. Environmental Research, 171, 452-469. doi: 10.1016/j.envres.2018.08.004. google scholar
  • Park, E. J., Jeon, C. H., Ko, G., Kim, J., & Sohn, D. H. (2000). Protective effect of curcumin in rat liver injury induced by carbon tetrachlo-ride. The Journal of Pharmacy and Pharmacology, 52(4), 437-440. https://doi.org/10.1211/0022357001774048 google scholar
  • Rathore, S., Mukim, M., Sharma, P., Devi, S., Nagar, J. C., & Khalid, M. (2020). Curcumin: A Review for Health Benefits Kingdom of Saudi Arabia. International Journal of Research and Review, 7 (1), 273-290. google scholar
  • Reyes-Gordillo, K., Segovia, J., Shibayama, M., Vergara, P., Moreno, M. G., & Muriel, P. (2007). Curcumin protects against acute liver damage in the rat by inhibiting NF-kB, proinflammatory cytokines production and oxidative stress. Biochimica et Biophysica Acta, 1770 (6), 989-996. https://doi.org/10.1016/j.bbagen.2007.02.004 google scholar
  • Qin, W.,Ren, X., Zhao, L., Guo L. (2022). Exposure to perfluorooc-tanesulfonate reduced cell viability and insulin release capacity of p cells. Journal of Environmental Sciences, 1 15, 162-172. https:// doi.org/10.1016/j.jes.2021.07.004 google scholar
  • Qin X. D., Qian Z., Dharmage S. C., Perret J., Geiger S. E., Rigdon S.,.Dong G. H. (2017). Association of perfluoroalkyl substances exposure with impaired lung function in children.Environmental Research, 155, 15-21. https://doi.org/10.1016/j.envres.2017.01.025 google scholar
  • Saikat, S., Kreis, I., Davies, B., Bridgman, S., & Kamanyire, R. (2013). The impact of PFOS on health in the general population: a re-view. Environmental Science: Processes & Impacts 5(2), 329-35. doi: 10.1039/c2em30698k. google scholar
  • Sankar, P., Telang, A.G., & Manimaran, A. (2018). Protective effect of curcumin on cypermethrin-induced oxidative stress in Wistar rats. Nutrients, 64(5), 487-493. https://doi.org/10.3390/nu10070855 google scholar
  • Singh, R., & Sharma, P. (2011). Hepatoprotective effect of curcumin on lindane-induced oxidative stress in male Wistar Rats. Toxicol-ogy International, 18(2), 124-129. https://doi.org/10.4103/0971-6580.84264 google scholar
  • Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497-500. google scholar
  • Tang, L., Yu, J., Zhuge, S., Chen, H., Zhang, L., & Jiang, G. (2022). Oxidative stress and Cx43-mediated apoptosis are involved in PFOS-induced nephrotoxicity, Toxicology, 478, 153283. https:// doi.org/10.1016/j.tox.2022.153283 google scholar
  • Tapia, E., Sanchez-Lozada, L. G., Garcia-Nino, W. R., Garcia, E., Ce-recedo, A., Garcia-Arroyo, F. E,...Pedraza-Chaverr(, J. (2014). Cur-cumin prevents maleate-induced nephrotoxicity: Relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption, and activity of respiratory complex I. Free Radical Research, 48(11), 1342-1354. https://doi.org/10.3109/10715762.2 014.954109 google scholar
  • Tsuda, S. (2016). Differential toxicity between perfluorooc-tane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The Journal of Toxicological Sciences, 41(Special), 27-36. https://doi. org/10.2131/jts.41.SP27 google scholar
  • Torres, L., Redko, A., Limper, C., Imbiakha, B., Chang, S., & August, A. (2021). Effect of Perfluorooctanesulfonic acid (PFOS) on immune cell development and function in mice. Immunology Letters, 233, 31-41. https://doi.org/10.1016/j.imlet.2021.03.006 google scholar
  • Wang, G., Sun, S., Wu, X., Yang, S., Wu, Y., Zhao, J., Zhang, H., Chen W. (2020). Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. Ecotoxicology and Environmental Safety, 197 110590. https://doi. org/10.1016/j.ecoenv.2020.110590 google scholar
  • Wang, P., Liu, D., Yan, S., Cui, J., Liang, Y., & Ren, S. (2022). Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms. Toxics, 10(5), 265. doi: 10.3390/toxics10050265. google scholar
  • Wen, L., Chen, YT., Lee, YC. G., Ko, TL, Chou, H-C., & Juan, SH. (2021). Perfluorooctane sulfonate induces autophagy-associated apop-tosis through oxidative stress and the activation of extracellular signal-regulated kinases in renal tubular cells. PLoS ONE 16 (1): e0245442. https://doi.org/10.1371/journal.pone.0245442 google scholar
  • Wiels0e, M., Long, M. H., Ghisari, M., & Bonefeld-Jorgensen, E. C. (2015). Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere, 129, 239-245, 10.1016/j. chemosphere.2014.10.014 google scholar
  • Xing, J., Wang, G., Zhao, J., Wang, E., Yin, B., Fang, D.,...Chen, W. (2016). Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environ-mental Pollution, 210, 388-396. https://doi.org/10.1016/j.en-vpol.2015.12.008 google scholar
  • Xu, C., Jiang, Z. Y., Liu, Q., Liu, H., & Gu, A. (2017). Estrogen recep-tor beta mediates hepatotoxicity induced by perfluorooctane sulfonate in Mouse. Environmental Science and Pollution Research, 24, 13414-13423. https://doi.org/10.1007/s11356-017-8943-3. google scholar
  • Xu, D., Li, C., Wen, Y., & Liu, W. (2013). Antioxidant defense system responses and DNA damage of earthworms exposed to Perfluo-rooctane sulfonate (PFOS). Environmental Pollution, 174, 121-127. https://doi.org/10.1016/j.envpol.2012.10.030 google scholar
  • Xu, X.Y., Meng, X., Li, S., Gan, R.Y., Li, Y., & Li, H.B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10(10), 1553. https://doi.org/10.3390/nu10101553 google scholar
  • Yagi, K., Nishigaki, I., & Ohama, H. (1968). Measurement of serum TBA value. Vitamin, 37, 105-112. google scholar
  • Zheng, L, Dong, G. H., Jin, Y. H., & He, Q. C. (2009). Immunotoxic changes associated with a 7-day oral exposure to perfluorooc-tanesulfonate (PFOS) in adult male C57BL/6 mice. Archives of Toxi-cology, 83(7):679-89. https://doi.org/10.1007/s00204-008-0361-3. google scholar
  • Zhang, L., Lei, C., Chen, J., Yang, K., Zhu, L., & Lin, D. (2015). Effect of natural and synthetic surface coatings on the toxicity of mul-tiwalled carbon nanotubes toward green algae. Carbon, 83, 198207, 10.1016/j.carbon.2014.11.050 google scholar
There are 57 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Pelin Eroglu 0000-0002-6462-6841

Dilek Eke Karakuş 0000-0001-7284-0410

Serap Yalın 0000-0002-1286-2172

Ayla Çelik 0000-0002-0127-3639

Ali Erdinç Yalın 0000-0002-3351-6885

Publication Date August 30, 2023
Submission Date January 7, 2022
Published in Issue Year 2023 Volume: 53 Issue: 2

Cite

APA Eroglu, P., Eke Karakuş, D., Yalın, S., Çelik, A., et al. (2023). Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress. İstanbul Journal of Pharmacy, 53(2), 159-165. https://doi.org/10.26650/IstanbulJPharm.2023.1054752
AMA Eroglu P, Eke Karakuş D, Yalın S, Çelik A, Yalın AE. Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress. iujp. August 2023;53(2):159-165. doi:10.26650/IstanbulJPharm.2023.1054752
Chicago Eroglu, Pelin, Dilek Eke Karakuş, Serap Yalın, Ayla Çelik, and Ali Erdinç Yalın. “Protective Effect of Curcumin Against Perfluorooctane Sulfonate Induced Oxidative Stress”. İstanbul Journal of Pharmacy 53, no. 2 (August 2023): 159-65. https://doi.org/10.26650/IstanbulJPharm.2023.1054752.
EndNote Eroglu P, Eke Karakuş D, Yalın S, Çelik A, Yalın AE (August 1, 2023) Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress. İstanbul Journal of Pharmacy 53 2 159–165.
IEEE P. Eroglu, D. Eke Karakuş, S. Yalın, A. Çelik, and A. E. Yalın, “Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress”, iujp, vol. 53, no. 2, pp. 159–165, 2023, doi: 10.26650/IstanbulJPharm.2023.1054752.
ISNAD Eroglu, Pelin et al. “Protective Effect of Curcumin Against Perfluorooctane Sulfonate Induced Oxidative Stress”. İstanbul Journal of Pharmacy 53/2 (August 2023), 159-165. https://doi.org/10.26650/IstanbulJPharm.2023.1054752.
JAMA Eroglu P, Eke Karakuş D, Yalın S, Çelik A, Yalın AE. Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress. iujp. 2023;53:159–165.
MLA Eroglu, Pelin et al. “Protective Effect of Curcumin Against Perfluorooctane Sulfonate Induced Oxidative Stress”. İstanbul Journal of Pharmacy, vol. 53, no. 2, 2023, pp. 159-65, doi:10.26650/IstanbulJPharm.2023.1054752.
Vancouver Eroglu P, Eke Karakuş D, Yalın S, Çelik A, Yalın AE. Protective effect of curcumin against perfluorooctane sulfonate induced oxidative stress. iujp. 2023;53(2):159-65.