Cyto- and genotoxicity of copper (II) oxide (CuO) nanoparticles in HeLa cells
Year 2023,
Volume: 53 Issue: 2, 126 - 132, 30.08.2023
Fedaa Abo Ras
,
Gül Özhan
,
Mahmoud Abudayyak [m. Fırat Kenanoğlu]
Abstract
Background and Aims: Cancer is a widespread disease responsible for the death of millions every year. Different approaches and drugs are in use to treat cancer, however, there is a need for new drugs with low cost, high activity, and low side effect risks. Nanotechnology and nanomaterials are important to develop those drugs. Copper-based nanoparticles (NPs) are shown to have biological activity as the antibacterial, and cytotoxic potential. Copper (II) oxide (CuO) NPs are widely used among Cu-based NPs. Different studies evaluated its anticancer and cytotoxic activity; however, the results are still controversial.
Methods: It was planned to characterize the NPs using Transmission Electron Microscopy (TEM) in cell culture medium and distilled water and then to evaluate their cytotoxicity in human cervical cancer cells (HeLa) using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and neutral red uptake (NRU) assays. As one of the cytotoxicity mechanisms, the DNA damage induction potential was evaluated by Comet assay.
Results: The CuO NPs have an average diameter of about 35 nm in distilled water and 39 nm in cell culture medium. The IC50 levels of NPs were 10.7 µg/mL and 6.73 µg/mL by MTT and NRU assays, respectively. The results reveal the NPs dosedependently increased in the DNA damage. The tail moment was 1.3-fold at 3.125 µg/mL, 2.5-fold at 6.25 µg/mL, and 3.8-fold at 12.5 µg/mL.
Conclusion: CuO NPs have high cytotoxic activity in HeLa cancerous cells. The induction of DNA damage could be an important step in the induction of cell death. Further in vivo and in vitro studies in need to improve the safety/low toxicity and understand the molecular mechanism of CuO-induced activity.
Supporting Institution
the Research Fund of İstanbul University
Project Number
TDK-2021-38172
References
- Abudayyak, M., Guzel, E.E., Özhan, G. (2016a). Copper (II) oxide nanoparticles induce high toxicity in human neuronal cell. Global Journal of Medical Research: B Pharma, Drug Discovery, Toxicology & Medicine; XVI (III):6-15. google scholar
- Abudayyak, M., Altincekic Gurkaynak, T., & Özhan, G. (2016c). In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biological Trace Element Research, 175(2), 458-465. doi:10.1007/s12011-016-0803-3 google scholar
- Abudayyak, M., Guzel, E. E., & Özhan, G. (2016b). Copper (II) oxide nanoparticles induced nephrotoxicity in vitro conditions. Applied In Vitro Toxicology, 2(3), 157-164. doi:10.1089/aivt.2016.0008 google scholar
- Abudayyak, M., Guzel, E., & Özhan, G. (2017). Nickel oxide nanopar-ticles are highly toxic to SH-SY5Y neuronal cells. Neurochemistry International, 108, 7-14. doi:10.1016/j.neuint.2017.01.017 google scholar
- Abudayyak, M., Guzel, E., & Özhan, G. (2020). Cupric oxide nanoparticles induce cellular toxicity in liver and intestine cell lines. Advanced Pharmaceutical Bulletin, 10(2), 213-220. doi:10.34172/apb.2020.025 google scholar
- Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Bio-physical Research Communications, 396(2), 578-583. doi:10.1016/j. bbrc.2010.04.156 google scholar
- Aitken, R. J., Chaudhry, M. Q., Boxall, A. B., & Hull, M. (2006). Manu-facture and use of nanomaterials: Current status in the UK and global trends. Occupational Medicine, 56(5), 300-306. doi:10.1093/ occmed/kql051 google scholar
- Akhtar, M. J., Ahamed, M., Fareed, M., Alrokayan, S. A., & Kumar, S. (2012). Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by Cuo nanoparticles in mouse em-bryonic fibroblasts Balb 3t3. The Journal of Toxicological Sciences, 37(1), 139-148. doi:10.2131/jts.37.139 google scholar
- Akhtar, M. J., Kumar, S., Alhadlaq, H. A., Alrokayan, S. A., Abu-Salah, K. M., & Ahamed, M. (2016). Dose-dependent genotoxicity of cop-per oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and Industrial Health, 32(5), 809-821. doi:10.1177/0748233713511512 google scholar
- Alishah, H., Pourseyedi, S., Ebrahimipour, S.Y., Mahani, S.E., & Rafiei, N. (2017). Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei. Scienze Fisiche e Naturali 28, 65-71. https://doi.org/10.1007/s12210-016-0574-y google scholar
- • Andleeb, A., Andleeb, A., Asghar, S., Zaman, G., Tariq, M., Mehm-ood, A., . . . Abbasi, B. H. (2021). A systematic review of biosynthe-sized metallic nanoparticles as a promising Anti-Cancer-Strategy. Cancers, 13(11), 2818. doi:10.3390/cancers13112818 google scholar
- Chang, Y., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of Cuo and zno nanoparticles. Materials, 5(12), 2850-2871. doi:10.3390/ma5122850 google scholar
- Chen, J., Zhu, J., Cho, H., Cui, K., Li, F., Zhou, X., . . . Huang, X. (2008). Differential cytotoxicity of metal oxide nanopar-ticles. Journal of Experimental Nanoscience, 3(4), 321-328. doi:10.1080/17458080802235765 google scholar
- Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., . . . Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109-120. doi:10.1016/j.tox-let.2005.10.003 google scholar
- Cioffi, N., Ditaranto, N., Torsi, L., Picca, R. A., Sabbatini, L., Valen-tini, A., . . . Zambonin, P. G. (2005). Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 381(3), 607616. doi:10.1007/s00216-004-2761-4 google scholar
- Collins, A. R. (2004). The comet assay for DNA damage and repair: Principles, applications, and limitations. Molecular Biotechnology, 26(3), 249-261. doi:10.1385/mb:26:3:249 google scholar
- Dadure K.M., Mahapatra D., Haldar A., Potbhare A.K., Chaudhary R.G. (2022). Utilization of mother nature’s gift for the biofabrication of copper/ copper oxide nanoparticles for therapeutic applica-tions. Jordan Journal of Physics, 15(1), 89-99. doi:10.47011/15.1.12 Gnanavel, V., Palanichamy, V., & Roopan, S. M. (2017). Biosynthesis and characterization of copper oxide nanoparticles and its an-ticancer activity on Human Colon Cancer Cell Lines (HCT-116). Journal of Photochemistry and Photobiology B: Biology, 171, 133138. doi:10.1016/j.jphotobiol.2017.05.001 google scholar
- Farshori, N.N., Siddiqui, M.A., Al-Oqail, M.M., Al-Sheddi, E.S., Al-Massarani, S.M., Ahamed, M, ... Al-Khedhairy, A.A. (2022). Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Biological Trace Element Research 200, 5042-5051 (2022). https:// doi.org/10.1007/s12011-022- google scholar
- Gosens, I., Cassee, F. R., Zanella, M., Manodori, L., Brunelli, A., Costa, A. L., . . . Stone, V. (2016). Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology, 10(8), 1084-1095. doi:10.3109/174353 90.2016.1172678 google scholar
- Ingle, A. P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A Re-view. Applied Microbiology and Biotechnology, 98(3), 1001-1009. doi:10.1007/s00253-013-5422-8 google scholar
- Kadammattil, A. V., Sajankila, S. P., Prabhu, S., Rao, B. N., & Rao, B. S. (2018). Systemic toxicity and teratogenicity of copper oxide nanoparticles and copper sulfate. Journal of Nanoscience and Nanotechnology, 18(4), 2394-2404. doi:10.1166/jnn.2018.14542 google scholar
- Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Cop-per oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Re-search in Toxicology, 21(9), 1726-1732. doi:10.1021/tx800064j google scholar
- Khalid, S., Afzal, N., Khan, J. A., Hussain, Z., Qureshi, A. S., Anwar, H., & Jamil, Y. (2018). Antioxidant resveratrol protects against copper ox-ide nanoparticle toxicity in vivo. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391(10), 1053-1062. doi:10.1007/s00210-018-1526-0 google scholar
- Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., . . . Liao, M. (2008). Integrated metabolomic analysis of the nano-sized copper parti-cle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232(2), 292-301. doi:10.1016/j.taap.2008.06.026 google scholar
- Liu, Y., Gao, Y., Zhang, L., Wang, T., Wang, J., Jiao, F., . . . Chen, C. (2009). Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. Journal of Nanoscience and Nanotechnology, 9(11), 6335-6343. doi:10.1166/jnn.2009.1320 google scholar
- Maksoudian, C., Saffarzadeh, N., Hesemans, E., Dekoning, N., Butt-iens, K., & Soenen, S. J. (2020). Role of inorganic nanoparticle deg-radation in cancer therapy. Nanoscale Advances, 2(9), 3734-3763. doi:10.1039/d0na00286k google scholar
- Masters, J. R. (2002). Hela cells 50 years on: The good, the bad and the ugly. Nature Reviews Cancer, 2(4), 315-319. doi:10.1038/nrc775 google scholar
- Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., . . . Zhao, Y. (2007). Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 175(1-3), 102-110. doi:10.1016/j.toxlet.2007.09.015 google scholar
- Nagajyothi, P., Muthuraman, P., Sreekanth, T., Kim, D. H., & Shim, J. (2017). Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian Journal of Chemistry, 10(2), 215-225. doi:10.1016/j.arab-jc.2016.01.011 google scholar
- Mahmoud, N.M.R., Mohamed, H.I., Ahmed, S.B., & Akhtar, S. (2020). Efficient biosynthesis of CuO nanoparticles with poten-tial cytotoxic activity. Chemical Papers 74, 2825-2835 https://doi. org/10.1007/s11696-020-01120-6 google scholar
- Oza, G., Calzadilla-Avila, A. I., Reyes-Calderon, A., Anna, K. K., Ramfrez-Bon, R., Tapia-Ramirez, J., & Sharma, A. (2020). Ph-depen-dent biosynthesis ofcopper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Applied Nanosci-ence, 10(2), 541-550. doi:10.1007/s13204-019-01159-2 google scholar
- Perreault, F., Melegari, S. P., Da Costa, C. H., De Oliveira Franco Rossetto, A. L., Popovic, R., & Matias, W. G. (2012). Genotoxic ef-fects of copper oxide nanoparticles in Neuro 2a Cell Cultures. Science of The Total Environment, 441, 117-124. doi:10.1016/j.sci-totenv.2012.09.065 google scholar
- Piret, J., Jacques, D., Audinot, J., Mejia, J., Boilan, E., Noel, F., . . . Tous-saint, O. (2012). Copper (II) oxide nanoparticles penetrate into HEPG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale, 4(22), 7168. doi:10.1039/ c2nr31785k google scholar
- Rani, N., & Saini, K. (2022). Biogenic metal and metal oxides nanoparticles as anticancer agent: A Review. IOP Confer-ence Series: Materials Science and Engineering, 1225(1), 012043. doi:10.1088/1757-899x/1225/1/012043 google scholar
- Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bio-process and Biosystems Engineering, 40(6), 943-957. doi:10.1007/ s00449-017-1758-2 google scholar
- Repetto, G., Del Peso, A., & Zurita, J. L. (2008). Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Proto-cols, 3(7), 1125-1131. doi:10.1038/nprot.2008.75 google scholar
- Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K. S., & Ravi-kumar, V. (2014). Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 44, 234-239. doi:10.1016/j.msec.2014.08.030 google scholar
- Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., & Syed, A. F. (2010). Metal-based nanoparticles and their toxicity assessment. WIREs Nanomedicine and Nanobiotechnology, 2(5), 544-568. doi:10.1002/wnan.103 google scholar
- Sekhon, B. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications, 31. doi:10.2147/nsa.s39406 google scholar
- Siddiqui, M. A., Alhadlaq, H. A., Ahmad, J., Al-Khedhairy, A. A., Musarrat, J., & Ahamed, M. (2013). Copper oxide nanoparticles induced mitochondria mediated apoptosis in human Hepatocar-cinoma cells. PLoS ONE, 8(8), doi:10.1371/journal.pone.0069534 google scholar
- Speit, G., & Hartmann, A. (1999). The comet assay (single-cell gel test): A sensitive genotoxicity test for the detection of DNA damage and Repair. DNA Repair Protocols, 203-212. doi:10.1385/1-59259-675-4:203 google scholar
- Sun, J., Wang, S., Zhao, D., Hun, F. H., Weng, L., & Liu, H. (2011). Cyto-toxicity, permeability, and inflammation of metal oxide nanopar-ticles in human cardiac microvascular endothelial cells. Cell Biolo-gy and Toxicology, 27(5), 333-342. doi:10.1007/s10565-011-9191-9 google scholar
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2020). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. doi:10.3322/caac.21660 google scholar
- Thit, A., Selck, H., & Bjerregaard, H. F. (2013). Toxicity of cuo nanoparticles and Cu ions to tight epithelial cells from xenopus laevis (A6): Effects on proliferation, cell cycle progression and cell death. Toxicology in Vitro, 27(5), 1596-1601. doi:10.1016/j. tiv.2012.12.013 google scholar
- Thit, A., Selck, H., & Bjerregaard, H. F. (2015). Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicology in Vitro, 29(5), 1053-1059. doi:10.1016/j.tiv.2015.03.020 google scholar
- Tuli, H. S., Kashyap, D., Bedi, S. K., Kumar, P., Kumar, G., & Sandhu, S. S. (2015). Molecular aspects of Metal Oxide Nanoparticle (MO-NPS) mediated pharmacological effects. Life Sciences, 143, 71-79. doi:10.1016/j.lfs.2015.10.021 google scholar
- Van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitiv-ity assays: The MTT assay. Methods in Molecular Biology, 237-245. doi:10.1007/978-1-61779-080-5_20 google scholar
- Verma, R., & Hansch, C. (2006). Chemical toxic-ity on Hela cells. Current Medicinal Chemistry, 13(4), 423-448. doi:10.2174/092986706775527910 google scholar
- Wang, Y., Aker, W.G., Hwang, H.M., Yedjou, C.G., Yu, H., Tchoun-wou, P.B. (2011). A study of the mechanism of in vitro cytotox-icity of metal oxide nanoparticles using catfish primary hepato-cytes and human HepG2 cells. Science of the Total Environment. 409(22):4753-62. doi: 10.1016/j. scitotenv.2011.07.039 google scholar
- Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., & Xing, B. (2012). Cuo nanoparticle interaction with human epithelial cells: Cellular up-take, location, export, and genotoxicity. Chemical Research in Toxi-cology, 25(7), 1512-1521. doi:10.1021/tx3002093 google scholar
- Xu, J., Li, Z., Xu, P., Xiao, L., & Yang, Z. (2012). Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Archives of Toxicology, 87(6), 1067-1073. doi:10.1007/s00204-012-0925-0 google scholar
Year 2023,
Volume: 53 Issue: 2, 126 - 132, 30.08.2023
Fedaa Abo Ras
,
Gül Özhan
,
Mahmoud Abudayyak [m. Fırat Kenanoğlu]
Project Number
TDK-2021-38172
References
- Abudayyak, M., Guzel, E.E., Özhan, G. (2016a). Copper (II) oxide nanoparticles induce high toxicity in human neuronal cell. Global Journal of Medical Research: B Pharma, Drug Discovery, Toxicology & Medicine; XVI (III):6-15. google scholar
- Abudayyak, M., Altincekic Gurkaynak, T., & Özhan, G. (2016c). In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biological Trace Element Research, 175(2), 458-465. doi:10.1007/s12011-016-0803-3 google scholar
- Abudayyak, M., Guzel, E. E., & Özhan, G. (2016b). Copper (II) oxide nanoparticles induced nephrotoxicity in vitro conditions. Applied In Vitro Toxicology, 2(3), 157-164. doi:10.1089/aivt.2016.0008 google scholar
- Abudayyak, M., Guzel, E., & Özhan, G. (2017). Nickel oxide nanopar-ticles are highly toxic to SH-SY5Y neuronal cells. Neurochemistry International, 108, 7-14. doi:10.1016/j.neuint.2017.01.017 google scholar
- Abudayyak, M., Guzel, E., & Özhan, G. (2020). Cupric oxide nanoparticles induce cellular toxicity in liver and intestine cell lines. Advanced Pharmaceutical Bulletin, 10(2), 213-220. doi:10.34172/apb.2020.025 google scholar
- Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Bio-physical Research Communications, 396(2), 578-583. doi:10.1016/j. bbrc.2010.04.156 google scholar
- Aitken, R. J., Chaudhry, M. Q., Boxall, A. B., & Hull, M. (2006). Manu-facture and use of nanomaterials: Current status in the UK and global trends. Occupational Medicine, 56(5), 300-306. doi:10.1093/ occmed/kql051 google scholar
- Akhtar, M. J., Ahamed, M., Fareed, M., Alrokayan, S. A., & Kumar, S. (2012). Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by Cuo nanoparticles in mouse em-bryonic fibroblasts Balb 3t3. The Journal of Toxicological Sciences, 37(1), 139-148. doi:10.2131/jts.37.139 google scholar
- Akhtar, M. J., Kumar, S., Alhadlaq, H. A., Alrokayan, S. A., Abu-Salah, K. M., & Ahamed, M. (2016). Dose-dependent genotoxicity of cop-per oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and Industrial Health, 32(5), 809-821. doi:10.1177/0748233713511512 google scholar
- Alishah, H., Pourseyedi, S., Ebrahimipour, S.Y., Mahani, S.E., & Rafiei, N. (2017). Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei. Scienze Fisiche e Naturali 28, 65-71. https://doi.org/10.1007/s12210-016-0574-y google scholar
- • Andleeb, A., Andleeb, A., Asghar, S., Zaman, G., Tariq, M., Mehm-ood, A., . . . Abbasi, B. H. (2021). A systematic review of biosynthe-sized metallic nanoparticles as a promising Anti-Cancer-Strategy. Cancers, 13(11), 2818. doi:10.3390/cancers13112818 google scholar
- Chang, Y., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of Cuo and zno nanoparticles. Materials, 5(12), 2850-2871. doi:10.3390/ma5122850 google scholar
- Chen, J., Zhu, J., Cho, H., Cui, K., Li, F., Zhou, X., . . . Huang, X. (2008). Differential cytotoxicity of metal oxide nanopar-ticles. Journal of Experimental Nanoscience, 3(4), 321-328. doi:10.1080/17458080802235765 google scholar
- Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., . . . Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109-120. doi:10.1016/j.tox-let.2005.10.003 google scholar
- Cioffi, N., Ditaranto, N., Torsi, L., Picca, R. A., Sabbatini, L., Valen-tini, A., . . . Zambonin, P. G. (2005). Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 381(3), 607616. doi:10.1007/s00216-004-2761-4 google scholar
- Collins, A. R. (2004). The comet assay for DNA damage and repair: Principles, applications, and limitations. Molecular Biotechnology, 26(3), 249-261. doi:10.1385/mb:26:3:249 google scholar
- Dadure K.M., Mahapatra D., Haldar A., Potbhare A.K., Chaudhary R.G. (2022). Utilization of mother nature’s gift for the biofabrication of copper/ copper oxide nanoparticles for therapeutic applica-tions. Jordan Journal of Physics, 15(1), 89-99. doi:10.47011/15.1.12 Gnanavel, V., Palanichamy, V., & Roopan, S. M. (2017). Biosynthesis and characterization of copper oxide nanoparticles and its an-ticancer activity on Human Colon Cancer Cell Lines (HCT-116). Journal of Photochemistry and Photobiology B: Biology, 171, 133138. doi:10.1016/j.jphotobiol.2017.05.001 google scholar
- Farshori, N.N., Siddiqui, M.A., Al-Oqail, M.M., Al-Sheddi, E.S., Al-Massarani, S.M., Ahamed, M, ... Al-Khedhairy, A.A. (2022). Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Biological Trace Element Research 200, 5042-5051 (2022). https:// doi.org/10.1007/s12011-022- google scholar
- Gosens, I., Cassee, F. R., Zanella, M., Manodori, L., Brunelli, A., Costa, A. L., . . . Stone, V. (2016). Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology, 10(8), 1084-1095. doi:10.3109/174353 90.2016.1172678 google scholar
- Ingle, A. P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A Re-view. Applied Microbiology and Biotechnology, 98(3), 1001-1009. doi:10.1007/s00253-013-5422-8 google scholar
- Kadammattil, A. V., Sajankila, S. P., Prabhu, S., Rao, B. N., & Rao, B. S. (2018). Systemic toxicity and teratogenicity of copper oxide nanoparticles and copper sulfate. Journal of Nanoscience and Nanotechnology, 18(4), 2394-2404. doi:10.1166/jnn.2018.14542 google scholar
- Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Cop-per oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Re-search in Toxicology, 21(9), 1726-1732. doi:10.1021/tx800064j google scholar
- Khalid, S., Afzal, N., Khan, J. A., Hussain, Z., Qureshi, A. S., Anwar, H., & Jamil, Y. (2018). Antioxidant resveratrol protects against copper ox-ide nanoparticle toxicity in vivo. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391(10), 1053-1062. doi:10.1007/s00210-018-1526-0 google scholar
- Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., . . . Liao, M. (2008). Integrated metabolomic analysis of the nano-sized copper parti-cle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232(2), 292-301. doi:10.1016/j.taap.2008.06.026 google scholar
- Liu, Y., Gao, Y., Zhang, L., Wang, T., Wang, J., Jiao, F., . . . Chen, C. (2009). Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. Journal of Nanoscience and Nanotechnology, 9(11), 6335-6343. doi:10.1166/jnn.2009.1320 google scholar
- Maksoudian, C., Saffarzadeh, N., Hesemans, E., Dekoning, N., Butt-iens, K., & Soenen, S. J. (2020). Role of inorganic nanoparticle deg-radation in cancer therapy. Nanoscale Advances, 2(9), 3734-3763. doi:10.1039/d0na00286k google scholar
- Masters, J. R. (2002). Hela cells 50 years on: The good, the bad and the ugly. Nature Reviews Cancer, 2(4), 315-319. doi:10.1038/nrc775 google scholar
- Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., . . . Zhao, Y. (2007). Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 175(1-3), 102-110. doi:10.1016/j.toxlet.2007.09.015 google scholar
- Nagajyothi, P., Muthuraman, P., Sreekanth, T., Kim, D. H., & Shim, J. (2017). Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian Journal of Chemistry, 10(2), 215-225. doi:10.1016/j.arab-jc.2016.01.011 google scholar
- Mahmoud, N.M.R., Mohamed, H.I., Ahmed, S.B., & Akhtar, S. (2020). Efficient biosynthesis of CuO nanoparticles with poten-tial cytotoxic activity. Chemical Papers 74, 2825-2835 https://doi. org/10.1007/s11696-020-01120-6 google scholar
- Oza, G., Calzadilla-Avila, A. I., Reyes-Calderon, A., Anna, K. K., Ramfrez-Bon, R., Tapia-Ramirez, J., & Sharma, A. (2020). Ph-depen-dent biosynthesis ofcopper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Applied Nanosci-ence, 10(2), 541-550. doi:10.1007/s13204-019-01159-2 google scholar
- Perreault, F., Melegari, S. P., Da Costa, C. H., De Oliveira Franco Rossetto, A. L., Popovic, R., & Matias, W. G. (2012). Genotoxic ef-fects of copper oxide nanoparticles in Neuro 2a Cell Cultures. Science of The Total Environment, 441, 117-124. doi:10.1016/j.sci-totenv.2012.09.065 google scholar
- Piret, J., Jacques, D., Audinot, J., Mejia, J., Boilan, E., Noel, F., . . . Tous-saint, O. (2012). Copper (II) oxide nanoparticles penetrate into HEPG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale, 4(22), 7168. doi:10.1039/ c2nr31785k google scholar
- Rani, N., & Saini, K. (2022). Biogenic metal and metal oxides nanoparticles as anticancer agent: A Review. IOP Confer-ence Series: Materials Science and Engineering, 1225(1), 012043. doi:10.1088/1757-899x/1225/1/012043 google scholar
- Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bio-process and Biosystems Engineering, 40(6), 943-957. doi:10.1007/ s00449-017-1758-2 google scholar
- Repetto, G., Del Peso, A., & Zurita, J. L. (2008). Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Proto-cols, 3(7), 1125-1131. doi:10.1038/nprot.2008.75 google scholar
- Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K. S., & Ravi-kumar, V. (2014). Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 44, 234-239. doi:10.1016/j.msec.2014.08.030 google scholar
- Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., & Syed, A. F. (2010). Metal-based nanoparticles and their toxicity assessment. WIREs Nanomedicine and Nanobiotechnology, 2(5), 544-568. doi:10.1002/wnan.103 google scholar
- Sekhon, B. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications, 31. doi:10.2147/nsa.s39406 google scholar
- Siddiqui, M. A., Alhadlaq, H. A., Ahmad, J., Al-Khedhairy, A. A., Musarrat, J., & Ahamed, M. (2013). Copper oxide nanoparticles induced mitochondria mediated apoptosis in human Hepatocar-cinoma cells. PLoS ONE, 8(8), doi:10.1371/journal.pone.0069534 google scholar
- Speit, G., & Hartmann, A. (1999). The comet assay (single-cell gel test): A sensitive genotoxicity test for the detection of DNA damage and Repair. DNA Repair Protocols, 203-212. doi:10.1385/1-59259-675-4:203 google scholar
- Sun, J., Wang, S., Zhao, D., Hun, F. H., Weng, L., & Liu, H. (2011). Cyto-toxicity, permeability, and inflammation of metal oxide nanopar-ticles in human cardiac microvascular endothelial cells. Cell Biolo-gy and Toxicology, 27(5), 333-342. doi:10.1007/s10565-011-9191-9 google scholar
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2020). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. doi:10.3322/caac.21660 google scholar
- Thit, A., Selck, H., & Bjerregaard, H. F. (2013). Toxicity of cuo nanoparticles and Cu ions to tight epithelial cells from xenopus laevis (A6): Effects on proliferation, cell cycle progression and cell death. Toxicology in Vitro, 27(5), 1596-1601. doi:10.1016/j. tiv.2012.12.013 google scholar
- Thit, A., Selck, H., & Bjerregaard, H. F. (2015). Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicology in Vitro, 29(5), 1053-1059. doi:10.1016/j.tiv.2015.03.020 google scholar
- Tuli, H. S., Kashyap, D., Bedi, S. K., Kumar, P., Kumar, G., & Sandhu, S. S. (2015). Molecular aspects of Metal Oxide Nanoparticle (MO-NPS) mediated pharmacological effects. Life Sciences, 143, 71-79. doi:10.1016/j.lfs.2015.10.021 google scholar
- Van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitiv-ity assays: The MTT assay. Methods in Molecular Biology, 237-245. doi:10.1007/978-1-61779-080-5_20 google scholar
- Verma, R., & Hansch, C. (2006). Chemical toxic-ity on Hela cells. Current Medicinal Chemistry, 13(4), 423-448. doi:10.2174/092986706775527910 google scholar
- Wang, Y., Aker, W.G., Hwang, H.M., Yedjou, C.G., Yu, H., Tchoun-wou, P.B. (2011). A study of the mechanism of in vitro cytotox-icity of metal oxide nanoparticles using catfish primary hepato-cytes and human HepG2 cells. Science of the Total Environment. 409(22):4753-62. doi: 10.1016/j. scitotenv.2011.07.039 google scholar
- Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., & Xing, B. (2012). Cuo nanoparticle interaction with human epithelial cells: Cellular up-take, location, export, and genotoxicity. Chemical Research in Toxi-cology, 25(7), 1512-1521. doi:10.1021/tx3002093 google scholar
- Xu, J., Li, Z., Xu, P., Xiao, L., & Yang, Z. (2012). Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Archives of Toxicology, 87(6), 1067-1073. doi:10.1007/s00204-012-0925-0 google scholar