Research Article
BibTex RIS Cite

Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br.

Year 2024, Volume: 54 Issue: 2, 165 - 174, 26.08.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1313743

Abstract

Background and Aims: Traditional indigenous system of medicine employed many Chenopodium species to treat a wide range of ailments. Therefore, the current study aims to evaluate the phenolic content, flavonoid content, and antioxidant capacity of the species Chenopodium album and Chenopodium pumilio.

Methods: Phenolics and flavonoid content were quantified using spectrophotometric techniques. The antioxidant activity of Chenopodium extracts was evaluated by assaying ferric reducing antioxidant power, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, phosphomolybdenum reducing power, ferrous ion chelating activity, hydrogen peroxide radical scav enging activity, hydroxyl radical scavenging activity, deoxyribose degradation activity, and β-carotene bleaching activity.

Results: In C. album and C. pumilio, total phenolic concentration was 17.5–23.8 and 13.3–25.3 mg tannic acid equivalent/g, respectively, and flavonoid content was 0.21–0.85 mg and 0.10–0.89 mg quercetin equivalent/g, respectively. Thus, C. pumilio had a higher content of phenolics and flavonoids than C. album. However, comparison of extracts in different solvents showed that ethanolic and aqueous extracts exhibited higher phenolics and flavonoid content than other solvent systems. The antioxidant capability of the species, determined by antioxidant assays, varied with the species evaluated and the solvents used for extraction. Remarkably, the correlation coefficient of different antioxidant assays with the phenolics and flavonoid content in both species showed discrepancy.

Conclusion: Ethanolic and aqueous extracts of the Chenopodium species studied had higher phenolics, flavonoids, and free radical scavenging activity than methanolic and acetonic extracts. The ethanolic and aqueous extracts of the studied species provide a potential source of antioxidants for drug formulation.

References

  • Adedapo A., Jimoh F., Afolayan A. (2011). Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Biden spilosa and Chenopodium album. Acta Poloniae Pharmaceutica Drug Research, 68, 83-92. google scholar
  • Al-Laith, A.A., Alkhuzai, J., & Freije, A. (2019). Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arabian Journal of Chemistry, 12 (8), 2365-2371. https://doi.org/10.1016/j.arabjc.2015.03.004. google scholar
  • Alnsour, L., Issa, R., Awwad, S., Albals, D., & Al-Momani, I. (2022). Quantification of total phenols and antioxidants in cof-fee samples of different origins and evaluation of the effect of degree of roasting on their levels. Molecules, 28, 27(5):1591. https://doi.org/10.3390/molecules27051591. google scholar
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant ac-tivity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119 (2), 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032. google scholar
  • Aquino, R., Morelli, S., Lauro, M. R., Abdo, S., Saija, A., & Tomaino, A. (2001). Phenolic constituents and antioxidant activity of an ex-tract of Anthurium versicolor leaves. Journal of Natural Products, 64(8), 1019-23. https://doi.org/10.1021/np0101245. google scholar
  • Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants (Basel), 8(4), 96. https://doi.org/10.3390/plants8040096. google scholar
  • Basniwal, P. K., Suthar, M., Rathore, G. S., Gupta, R., Kumar, V., Pareek, A., & Jain D. (2009). In-vitro antioxidant activity of hot aqueous extract of Helicteres isora Linn. fruits. Natural Product Radiance, 8, 483-7. google scholar
  • Cai. Y. Z., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Science, 74, 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047. google scholar
  • Cheng, Z., Li, Y., & Chang, W. (2003). Kinetic deoxyribose degradation assay and its application in assessing the an-tioxidant activities of phenolic compounds in a Fenton-type reaction system. Analytica Chimica Acta, 478(1), 129-137. https://doi.org/10.1016/S0003-2670(02)01435-6. google scholar
  • Chew, Y.L., Goh J.K., & Lim Y.Y. (2009). Assessment of in-vitro antioxidant capacity and polyphenolic composi-tion of selected medicinal herbs from Leguminosae fam-ily in Peninsular Malaysia. Food Chemistry, 116, 13-18. https://doi.org/10.1016/j.foodchem.2009.01.091. google scholar
  • Conway, G. A., & Slocumb J. C. (1979). Plants used as abortifacients and emmenagogues by Spanish New Mexicans. Journal of Ethnopharmacology, 1(3), 241-261. https://doi.org/10.1016/s0378-8741(79)80014-8. google scholar
  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environ-mental stress in plants. Frontiers in Environmental Science, 2, 53. https://doi.org/10.3389/fenvs.2014.00053 google scholar
  • Eshwarappa, R. S., Iyer, R. S., Subbaramaiah, S. R., Richard, S. A., & Dhananjaya, B. L. (2014). Antioxidant activity of Syzygium cumini leaf gall extracts. Bioimpacts, 4(2), 101-7. https://doi.org/10.5681/bi.2014.018 google scholar
  • Fadda A., Barberis A., & Sanna D. (2018). Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the deter-mination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR). Food Chemistry, 240,174-182. https://doi.org/10.1016/j.foodchem.2017.07.076. google scholar
  • Fernandes, R. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pug-ine, S. M., Munekata, P. E., Lorenzo, J. M., & de Melo M. P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451-60. https://doi.org/10.1007/s13197-015-1994-x. google scholar
  • Fuentes-Bazan, S., Mansion, G., & Borsch, T. (2012). Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Molecular Phylogenetics and Evolution, 62, 359-374. https://doi.org/10.1016/j.ympev.2011.10.006. google scholar
  • Gulcin, İ., & Alwasel, S. H. (2022). Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes, 10(1), 132. https://doi.org/10.3390/pr10010132. google scholar
  • Gulcin, I., Berashvili, D., & Gepdiremen, A. (2005). Antiradical and antioxidant activity of total anthocyanins from Perilla pank-inensis decne. Journal of Ethnopharmacology, 101, 287-293. https://doi.org/10.1016/j.jep.2005.05.006. google scholar
  • Gupta, K., Maurya, S., Agarwal, S., Kushwaha, A., & Kumar, R. (2016). Antioxidant assessment of extracts obtained through hot extraction process. Cell and Molecular Biology, 62 (3), 129. https://doi.org/10.4172/1165-158X.1000129. google scholar
  • Gutierrez, R. M., & Navarro, Y. T. (2010). Antioxidant and hep-atoprotective effects of the methanol extract of the leaves of Satureja macrostema. Pharmacognosy Magazine, 6,125-31. https://doi.org/10.4103/0973-1296.62901. google scholar
  • Hirose, Y., Fujta T., Ishii T., & Ueno N. (2010). Antioxidative properties and flavonoids composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, 119, 1300-1306. https://doi.org/10.1016/j.foodchem.2009.09.008 google scholar
  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002). Development and validation of oxygen radical ab-sorbance capacity assay for lipophilic antioxidants using ran-domly methylated beta-cyclodextrin as the solubility enhancer. Journal of Agriculture and Food Chemistry, 50, 1815-1821. https://doi.org/10.1021/jf0113732. google scholar
  • Joshi, T., Deepa, P. R., & Sharma, P. K. (2022). Effect of different proportions of phenolics on antioxidant potential: Pointers for bioactive Synergy/Antagonism in foods and nutraceuticals. Pro-ceedings of the National Academy of Sciences, India Section B. 92, 939-946. https://doi.org/10.1007/s40011-022-01396-6. google scholar
  • Karwani, G. & Sisodia, S. S. (2015). Chenopodium album Linn (Bathua): A review of potential therapeutic applications. Inter-national Journal of Chemical and Pharmaceutical Analysis, 2(4), 1-5. https://doi.org/10.1007/s13197-014-1553-x. google scholar
  • Kolar, F. R., Kambhar, S. V., Chavana, M., Kadam, S. & Nadaf P. (2021). Disparities of phytochemical constituents and antioxi-dant activities of some Indigofera species. Israel Journal of Plant Sciences, 68 (1-2), 151-160. https://doi.org/10.1163/22238980-bja10025. google scholar
  • Kulisic, T., Radonic, A., Katalinic, V. & Milos, M. (2004). Use of different methods for testing antioxidative activ-ity of oregano essential oil. Food Chemistry, 85, 633-640. https://doi.org/10.1016/j.foodchem.2003.07.024. google scholar
  • Marimuthu, S., Balakrishnan, P., & Nair, S. (2013). Phyto-chemical investigation and radical scavenging activities of Melia azedarach and its DNA protective effect in cultured lymphocytes. Pharmaceutical Biology, 51(10), 1331-1340. https://doi.org/10.3109/13880209.2013.791323. google scholar
  • Michiels, J. A., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chemistry, 130, 986993. https://doi.org/10.1016/j.foodchem.2011.07.117. google scholar
  • Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Com-miphora mollis (Oliv.) Engl. resin. BMC Chemistry, 25, 16(1):48. https://doi.org/10.1186/s13065-022-00841-x. google scholar
  • Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid com-pounds in 12 Indonesian indigenous herbs. Antioxidants (Basel), 27, 10(10):1530. https://doi.org/10.3390/antiox10101530. google scholar
  • Nowak, R., Szewczyk, K., Gawlik-Dziki, U., Rzymowska, J., & Komsta, L. (2016). Antioxidative and cytotoxic poten-tial of some Chenopodium L. species growing in Poland. Saudi Journal of Biological Sciences, 23 (1), 15-23. https://doi.org/10.1016/j.sjbs.2015.01.017. google scholar
  • Pitchaon, M., Suttajit, M., & Pongsawatmani, R. (2007). Assess-ment of phenolic content and free radical scavenging capacity of some Thai indigenous plants. Food Chemistry, 100, 1409-1418. https://doi.org/10.1016/j.foodchem.2005.11.032. google scholar
  • Prieto, M. A., Rodriguez-Amado, I., Vazquez, J. A., & Murado, M. A. (2012). p—carotene assay revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. Journal of Agricultural and Food Chemistry, 60 (36), 8983-8993. https://doi.org/10.1021/jf302218g. google scholar
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: specific application to the de-termination of vitamin E. Analytical Biochemistry, 269, 337-341. https://doi.org/10.1006/abio.1999.4019. google scholar
  • Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant of di-etary polyphenols as determined by a modified ferric reducing antioxidant power assay. Journal of Agriculture and Food Chem-istry, 46, 3396-3402. https://doi.org/10.1021/jf9913458. PMID: 10956123. , google scholar
  • Rajurkar, N. S., & Hande, S. M. (2011). Estimation of phytochemi-cal content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sci-ences. 73(2), 146-51.https://doi.org/10.4103/0250-474x.91574. google scholar
  • Repo-Carrasco-Valencia, R., Hellström Pihlava, J. M., & Mat-tila, P.H. (2010). Flavonoids and other phenolic com-pounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087. google scholar
  • Saffoon, N., Uddin, R., Subhan, N., Hossain, H., Reza, H. M., & Alam M. A. (2014). In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of Codiaeum variegatum found in Bangladesh. Advanced Pharmaceutical Bulletin. 4 (Suppl 2), 533-541.https://doi.org/10.5681/apb.2014.079. google scholar
  • Sahat A. A., Ibrahim A. Y., & Alsaid M. S. (2015). Antioxidant capac-ity and phenolic content of seven Saudi Arabian medicinal herbs traditionally used in Saudi Arabia. Indian Journal of Traditional Knowledge, 1(1), 28-35. google scholar
  • Talcott, S.T., Howard, L.R., & Brenes, C.H. (2000). Antioxidant changes and sensory properties of carrot puree processed with or without periderm tissue. Journal of Agricultural and Food Chem-istry, 48, 1315-1321. https://doi.org/10.1021/jf9910178 google scholar
  • Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic com-pounds from medicinal plants for pharmaceutical and med-ical aspects: An overview. Medicines (Basel), 25, 5(3):93. https://doi.org/10.3390/medicines5030093. google scholar
  • Yadav, N., Vasudeva, N., Singh, S., & Sharma, S. K. (2007). Medicinal properties of genus Chenopodium Linn. Natural Product Radi-ance, 6(2), 131-134. google scholar
  • Zhao, G. R., Xiang, Z. J., Ye, T. X., Yuan, Y. J., & Guo, Z. X. (2006). Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chemistry, 99, 767-774. . https://doi.org/10.1016/j.foodchem.2005.09.002., google scholar
Year 2024, Volume: 54 Issue: 2, 165 - 174, 26.08.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1313743

Abstract

References

  • Adedapo A., Jimoh F., Afolayan A. (2011). Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Biden spilosa and Chenopodium album. Acta Poloniae Pharmaceutica Drug Research, 68, 83-92. google scholar
  • Al-Laith, A.A., Alkhuzai, J., & Freije, A. (2019). Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arabian Journal of Chemistry, 12 (8), 2365-2371. https://doi.org/10.1016/j.arabjc.2015.03.004. google scholar
  • Alnsour, L., Issa, R., Awwad, S., Albals, D., & Al-Momani, I. (2022). Quantification of total phenols and antioxidants in cof-fee samples of different origins and evaluation of the effect of degree of roasting on their levels. Molecules, 28, 27(5):1591. https://doi.org/10.3390/molecules27051591. google scholar
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant ac-tivity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119 (2), 770-778. https://doi.org/10.1016/j.foodchem.2009.07.032. google scholar
  • Aquino, R., Morelli, S., Lauro, M. R., Abdo, S., Saija, A., & Tomaino, A. (2001). Phenolic constituents and antioxidant activity of an ex-tract of Anthurium versicolor leaves. Journal of Natural Products, 64(8), 1019-23. https://doi.org/10.1021/np0101245. google scholar
  • Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants (Basel), 8(4), 96. https://doi.org/10.3390/plants8040096. google scholar
  • Basniwal, P. K., Suthar, M., Rathore, G. S., Gupta, R., Kumar, V., Pareek, A., & Jain D. (2009). In-vitro antioxidant activity of hot aqueous extract of Helicteres isora Linn. fruits. Natural Product Radiance, 8, 483-7. google scholar
  • Cai. Y. Z., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Science, 74, 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047. google scholar
  • Cheng, Z., Li, Y., & Chang, W. (2003). Kinetic deoxyribose degradation assay and its application in assessing the an-tioxidant activities of phenolic compounds in a Fenton-type reaction system. Analytica Chimica Acta, 478(1), 129-137. https://doi.org/10.1016/S0003-2670(02)01435-6. google scholar
  • Chew, Y.L., Goh J.K., & Lim Y.Y. (2009). Assessment of in-vitro antioxidant capacity and polyphenolic composi-tion of selected medicinal herbs from Leguminosae fam-ily in Peninsular Malaysia. Food Chemistry, 116, 13-18. https://doi.org/10.1016/j.foodchem.2009.01.091. google scholar
  • Conway, G. A., & Slocumb J. C. (1979). Plants used as abortifacients and emmenagogues by Spanish New Mexicans. Journal of Ethnopharmacology, 1(3), 241-261. https://doi.org/10.1016/s0378-8741(79)80014-8. google scholar
  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environ-mental stress in plants. Frontiers in Environmental Science, 2, 53. https://doi.org/10.3389/fenvs.2014.00053 google scholar
  • Eshwarappa, R. S., Iyer, R. S., Subbaramaiah, S. R., Richard, S. A., & Dhananjaya, B. L. (2014). Antioxidant activity of Syzygium cumini leaf gall extracts. Bioimpacts, 4(2), 101-7. https://doi.org/10.5681/bi.2014.018 google scholar
  • Fadda A., Barberis A., & Sanna D. (2018). Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the deter-mination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR). Food Chemistry, 240,174-182. https://doi.org/10.1016/j.foodchem.2017.07.076. google scholar
  • Fernandes, R. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pug-ine, S. M., Munekata, P. E., Lorenzo, J. M., & de Melo M. P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451-60. https://doi.org/10.1007/s13197-015-1994-x. google scholar
  • Fuentes-Bazan, S., Mansion, G., & Borsch, T. (2012). Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Molecular Phylogenetics and Evolution, 62, 359-374. https://doi.org/10.1016/j.ympev.2011.10.006. google scholar
  • Gulcin, İ., & Alwasel, S. H. (2022). Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes, 10(1), 132. https://doi.org/10.3390/pr10010132. google scholar
  • Gulcin, I., Berashvili, D., & Gepdiremen, A. (2005). Antiradical and antioxidant activity of total anthocyanins from Perilla pank-inensis decne. Journal of Ethnopharmacology, 101, 287-293. https://doi.org/10.1016/j.jep.2005.05.006. google scholar
  • Gupta, K., Maurya, S., Agarwal, S., Kushwaha, A., & Kumar, R. (2016). Antioxidant assessment of extracts obtained through hot extraction process. Cell and Molecular Biology, 62 (3), 129. https://doi.org/10.4172/1165-158X.1000129. google scholar
  • Gutierrez, R. M., & Navarro, Y. T. (2010). Antioxidant and hep-atoprotective effects of the methanol extract of the leaves of Satureja macrostema. Pharmacognosy Magazine, 6,125-31. https://doi.org/10.4103/0973-1296.62901. google scholar
  • Hirose, Y., Fujta T., Ishii T., & Ueno N. (2010). Antioxidative properties and flavonoids composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, 119, 1300-1306. https://doi.org/10.1016/j.foodchem.2009.09.008 google scholar
  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002). Development and validation of oxygen radical ab-sorbance capacity assay for lipophilic antioxidants using ran-domly methylated beta-cyclodextrin as the solubility enhancer. Journal of Agriculture and Food Chemistry, 50, 1815-1821. https://doi.org/10.1021/jf0113732. google scholar
  • Joshi, T., Deepa, P. R., & Sharma, P. K. (2022). Effect of different proportions of phenolics on antioxidant potential: Pointers for bioactive Synergy/Antagonism in foods and nutraceuticals. Pro-ceedings of the National Academy of Sciences, India Section B. 92, 939-946. https://doi.org/10.1007/s40011-022-01396-6. google scholar
  • Karwani, G. & Sisodia, S. S. (2015). Chenopodium album Linn (Bathua): A review of potential therapeutic applications. Inter-national Journal of Chemical and Pharmaceutical Analysis, 2(4), 1-5. https://doi.org/10.1007/s13197-014-1553-x. google scholar
  • Kolar, F. R., Kambhar, S. V., Chavana, M., Kadam, S. & Nadaf P. (2021). Disparities of phytochemical constituents and antioxi-dant activities of some Indigofera species. Israel Journal of Plant Sciences, 68 (1-2), 151-160. https://doi.org/10.1163/22238980-bja10025. google scholar
  • Kulisic, T., Radonic, A., Katalinic, V. & Milos, M. (2004). Use of different methods for testing antioxidative activ-ity of oregano essential oil. Food Chemistry, 85, 633-640. https://doi.org/10.1016/j.foodchem.2003.07.024. google scholar
  • Marimuthu, S., Balakrishnan, P., & Nair, S. (2013). Phyto-chemical investigation and radical scavenging activities of Melia azedarach and its DNA protective effect in cultured lymphocytes. Pharmaceutical Biology, 51(10), 1331-1340. https://doi.org/10.3109/13880209.2013.791323. google scholar
  • Michiels, J. A., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chemistry, 130, 986993. https://doi.org/10.1016/j.foodchem.2011.07.117. google scholar
  • Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Com-miphora mollis (Oliv.) Engl. resin. BMC Chemistry, 25, 16(1):48. https://doi.org/10.1186/s13065-022-00841-x. google scholar
  • Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid com-pounds in 12 Indonesian indigenous herbs. Antioxidants (Basel), 27, 10(10):1530. https://doi.org/10.3390/antiox10101530. google scholar
  • Nowak, R., Szewczyk, K., Gawlik-Dziki, U., Rzymowska, J., & Komsta, L. (2016). Antioxidative and cytotoxic poten-tial of some Chenopodium L. species growing in Poland. Saudi Journal of Biological Sciences, 23 (1), 15-23. https://doi.org/10.1016/j.sjbs.2015.01.017. google scholar
  • Pitchaon, M., Suttajit, M., & Pongsawatmani, R. (2007). Assess-ment of phenolic content and free radical scavenging capacity of some Thai indigenous plants. Food Chemistry, 100, 1409-1418. https://doi.org/10.1016/j.foodchem.2005.11.032. google scholar
  • Prieto, M. A., Rodriguez-Amado, I., Vazquez, J. A., & Murado, M. A. (2012). p—carotene assay revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. Journal of Agricultural and Food Chemistry, 60 (36), 8983-8993. https://doi.org/10.1021/jf302218g. google scholar
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: specific application to the de-termination of vitamin E. Analytical Biochemistry, 269, 337-341. https://doi.org/10.1006/abio.1999.4019. google scholar
  • Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant of di-etary polyphenols as determined by a modified ferric reducing antioxidant power assay. Journal of Agriculture and Food Chem-istry, 46, 3396-3402. https://doi.org/10.1021/jf9913458. PMID: 10956123. , google scholar
  • Rajurkar, N. S., & Hande, S. M. (2011). Estimation of phytochemi-cal content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sci-ences. 73(2), 146-51.https://doi.org/10.4103/0250-474x.91574. google scholar
  • Repo-Carrasco-Valencia, R., Hellström Pihlava, J. M., & Mat-tila, P.H. (2010). Flavonoids and other phenolic com-pounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087. google scholar
  • Saffoon, N., Uddin, R., Subhan, N., Hossain, H., Reza, H. M., & Alam M. A. (2014). In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of Codiaeum variegatum found in Bangladesh. Advanced Pharmaceutical Bulletin. 4 (Suppl 2), 533-541.https://doi.org/10.5681/apb.2014.079. google scholar
  • Sahat A. A., Ibrahim A. Y., & Alsaid M. S. (2015). Antioxidant capac-ity and phenolic content of seven Saudi Arabian medicinal herbs traditionally used in Saudi Arabia. Indian Journal of Traditional Knowledge, 1(1), 28-35. google scholar
  • Talcott, S.T., Howard, L.R., & Brenes, C.H. (2000). Antioxidant changes and sensory properties of carrot puree processed with or without periderm tissue. Journal of Agricultural and Food Chem-istry, 48, 1315-1321. https://doi.org/10.1021/jf9910178 google scholar
  • Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic com-pounds from medicinal plants for pharmaceutical and med-ical aspects: An overview. Medicines (Basel), 25, 5(3):93. https://doi.org/10.3390/medicines5030093. google scholar
  • Yadav, N., Vasudeva, N., Singh, S., & Sharma, S. K. (2007). Medicinal properties of genus Chenopodium Linn. Natural Product Radi-ance, 6(2), 131-134. google scholar
  • Zhao, G. R., Xiang, Z. J., Ye, T. X., Yuan, Y. J., & Guo, Z. X. (2006). Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chemistry, 99, 767-774. . https://doi.org/10.1016/j.foodchem.2005.09.002., google scholar
There are 43 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Botany
Journal Section Original Article
Authors

Firdose R. Kolar 0000-0001-7482-8802

Sidanand V. Kambhar 0000-0002-1701-0892

Vaishali S. Kamble 0009-0001-1237-1736

Azharuddin B. Daphedar 0000-0001-7824-3035

Publication Date August 26, 2024
Submission Date June 27, 2023
Published in Issue Year 2024 Volume: 54 Issue: 2

Cite

APA Kolar, F. R., Kambhar, S. V., Kamble, V. S., Daphedar, A. B. (2024). Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. İstanbul Journal of Pharmacy, 54(2), 165-174. https://doi.org/10.26650/IstanbulJPharm.2024.1313743
AMA Kolar FR, Kambhar SV, Kamble VS, Daphedar AB. Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. iujp. August 2024;54(2):165-174. doi:10.26650/IstanbulJPharm.2024.1313743
Chicago Kolar, Firdose R., Sidanand V. Kambhar, Vaishali S. Kamble, and Azharuddin B. Daphedar. “ Br”. İstanbul Journal of Pharmacy 54, no. 2 (August 2024): 165-74. https://doi.org/10.26650/IstanbulJPharm.2024.1313743.
EndNote Kolar FR, Kambhar SV, Kamble VS, Daphedar AB (August 1, 2024) Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. İstanbul Journal of Pharmacy 54 2 165–174.
IEEE F. R. Kolar, S. V. Kambhar, V. S. Kamble, and A. B. Daphedar, “ Br”., iujp, vol. 54, no. 2, pp. 165–174, 2024, doi: 10.26650/IstanbulJPharm.2024.1313743.
ISNAD Kolar, Firdose R. et al. “ Br”. İstanbul Journal of Pharmacy 54/2 (August 2024), 165-174. https://doi.org/10.26650/IstanbulJPharm.2024.1313743.
JAMA Kolar FR, Kambhar SV, Kamble VS, Daphedar AB. Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. iujp. 2024;54:165–174.
MLA Kolar, Firdose R. et al. “ Br”. İstanbul Journal of Pharmacy, vol. 54, no. 2, 2024, pp. 165-74, doi:10.26650/IstanbulJPharm.2024.1313743.
Vancouver Kolar FR, Kambhar SV, Kamble VS, Daphedar AB. Comparative examination of phenolic content, flavonoid content, and antioxidant efficacy of Chenopodium album L. and Chenopodium pumilio R. Br. iujp. 2024;54(2):165-74.