Anti-inflammatory activity of a novel lectin isolated from Pleurotus eryngii var. ferulae mushroom
Year 2024,
Volume: 54 Issue: 2, 195 - 204, 26.08.2024
Thoiba Mogahid Hussein Seliman
,
Gülsüm Altıparmak Ülbegi
,
Nurten Özsoy
,
Hevidar Alp Kavlo
,
Pınar Aksoy Sağırlı
Abstract
Background and Aims: Pleurotus species are edible mushrooms with important economic and medicinal value. Many phar macological properties of these species, such as anticancer, immunomodulating, and anti-inflammatory activities, have been attributed to lectin. The aim of this study was to purify a novel lectin from Pleurotus eryngii var. ferulae (PEFL) and investigate its anti-inflammatory activity.
Methods:PEFLwaspurifiedby80%ammoniumsulphatefractionation,diethylaminoethyl(DEAE)-Sepharose-4Banionexchange, and Sephadex G-100 gel filtration chromatography. The molar mass of the purified lectin was determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing conditions. Inhibition of lectin-induced haemagglu tination by several carbohydrates and one glycoprotein (ovalbumin) was also performed using the haemagglutination inhibition activity test. The anti-inflammatory effect of PEFL was tested in a lipopolysaccharide (LPS)-induced inflammation model in mouse macrophage cells (RAW 264.7). The levels of prostaglandin (PG)-E2, tumour necrosis factor-alpha (TNF-𝛼), interleukin 1-beta (IL-1𝛽), interleukin-6 (IL-6), interleukin-10 (IL-10), and interferon-gamma (IFN-𝛾) were determined using enzyme-linked immunosorbent assay (ELISA) kits. Furthermore, the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was estimated by western blot analysis.
Results: PEFL wasobtained in 16%yield. The specific activity of PEFL was calculated as 1280 haemagglutinating units (HU)/mg protein and was inhibited only by D-galactose. The molecular weight was determined to be 46 kDa. PEFL showed an anti inflammatory effect by reducing the production of pro-inflammatory PGs through COX-2 inhibition, as well as reducing iNOS expression. Furthermore, our findings reported that PEFL has a protective effect on inflammation by decreasing the production of pro-inflammatory cytokines and increasing the production of the anti-inflammatory cytokine (IL-10).
Conclusion:The results suggest that PEFL can be considered as a potential therapeutic agent in the development of new therapeutic strategies for inflammatory diseases.
Supporting Institution
Scientific Research Projects Coordination Unit of Istanbul University
References
- Akyüz, M. & Kırbağ, S. (2007). Ülkemizde sebze ve meyvelerin yanı sıra alternatif besin kaynağı: yabani mantar (Pleurotus eryngii var. ferulae). Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 8(1), 26-36. http://ofd.artvin.edu.tr/download/article-file/25715 google scholar
- Anjana, S.H. & Savita, J.A. (2017). Oyster mushroom: answer to human ailments. Asian Journal of Phar-maceutical and Clinical Research, 10(4), 24-27. https://doi.org/10.22159/ajpcr.2017.v10i4.16867 google scholar
- Bobek, P., Nosalova, V. & Cerna, S. (2001). Effect of pleuran (beta-glucan from Pleurotus ostreatus) in diet or drinking fluid on colitis in rats. Nahrung, 45(5), 360-363. https://doi.org/10.1002/1521-3803(20011001)45:5<360::AID-FOOD360>3.0.CO;2-C google scholar
- Choi, D. B., Cha, W. S., Kang, S. H. & Lee, B. R. (2004). Effect of Pleurotus ferulae extracts on viability of human lung cancer and cervical cancer cell lines. Biotechnology and Bioprocess Engi-neering, 9, 356-361. https://doi.org/10.1007/BF02933057 google scholar
- Choi, J.H., Kim, D.W., Kim, S., & Kim, S.J. (2017). In vitro antioxidant and in vivo hypolipidemic effects of the king oyster culinary-medicinal mushroom, Pleurotus eryngii var. ferulae DDL01 (Agaricomycetes), in rats with high-fat diet-induced fatty liver and hyperlipidemia. Interna-tional Journal of Medicinal Mushrooms, 19(2), 107-119. https://doi.org/10.1615/IntJMedMushrooms.v19.i2.20 google scholar
- Coelho, L.C.B.B., Silva, P.M.S., Lima, V.L.M., Pontual, E.V., Paiva, P.M.G., Napoleao,T.H. & Correia, M.T.S. (2017). Lectins, interconnecting proteins with biotechnologi-cal/pharmacological and therapeutic applications. Evidence-Based Complementary and Alternative Medicine, 1594074, 1-22. http://dx.doi.org/10.1155/2017/1594074 google scholar
- Dan, X., Liu, W. & Ng, T.B. (2015). Development and applications of lectins as biological tools in biomedi-cal research. Medicinal Research Reviews, 36(2), 221-247. https://doi.org/10.1002/med.21363 google scholar
- El-Deeb, N.M., El-Adawi, H.I., El-Wahab, A.E.A., Haddad, A.M., El Enshasy, H.A.,He, Y.- W. & Davis, K.R. (2019). Modulation of NKG2D, KIR2DL and cytokine production by Pleurotus os-treatus glucan enhances natural killer cell cytotoxicity toward cancer cells. Frontiers in Cell Developmental Biology, 7, 165. https://doi.org/10.3389/fcell.2019.00165. google scholar
- Elhusseiny, S.M., El-Mahdy, T.S., Elleboudy, N.S., Yahia, I.S., Farag, M.M., Ismail, N.S., Yassien, M.A. & Aboshanab, K.M. (2022). In vitro anti SARS-CoV-2 activity and docking analysis of Pleu-rotus ostreatus, Lentinula edodes and Agaricus bisporus edi-ble mushrooms. Infection and Drug Resistance, 15, 3459-3475. https://doi.org/10.2147/IDR.S362823 google scholar
- Guillot, J. & Konska, G. (1997). Lectins in higher fungi. Biochemical Systematics and Ecology, 25, 203-230.https://doi.org/10.1016/S0305-1978(96)00110-X google scholar
- Hassan, M.A.A., Rouf, R., Tiralongo, E., May, T.W. & Tiralongo, J. (2015). Mushroom lectins: Specificity, structure and bioactivity relevant to human disease. International Journal of Molecular Sci-ences, 16(4), 7802-7838. https://doi.org/10.3390/ijms16047802 google scholar
- Hu, S.H., Lien, J.L., Hsieh, S.L., Wang, J.C. & Chang, S.J. (2009). Antioxidant and antigenotoxicity activities of extracts from liquid submerged culture of culinary-medicinal ferula oyster mushroom, Pleurotus eryngii (DC.) Quel. var. ferulae (Lanzi) Sacc. (Agari-comycetideae). International Journal of Medicinal Mushrooms, 11(4), 395-408. https://doi.org/10.1615/IntJMedMushr.v11.i4.60 google scholar
- Jedinak, A., Dudhgaonkar, S., Wu, Q.L., Simon, J. & Sliva, D. (2011). Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-kB and AP-1 signaling. Nutrition Journal, 10, 1-10. https://doi.org/10.1186/1475-2891-10-52 google scholar
- Jo, K.-J., Ghim, J., Kim, J., Lee, H., Lee, T. G., Kim, J.-I., Kim, Y., Byun, J.W., Min, B.S., Son, J.S., Shim, S.G., Cheon, W.J. & Ryu, S.H. (2019). Water extract of Pleurotus eryngii var. ferulae prevents high-fat diet-induced obesity by inhibiting pancreatic lipase. Journal of Medicinal Food, 22(2), 178-185. https://doi.org/10.1089/jmf.2018.4255 google scholar
- Jose, N., Ajith, T.A. & Janardhanan, K.K. (2004). Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation. Phytotherapy Research, 18(1), 43-46. https://doi.org/10.1002/ptr.1355 google scholar
- Khan, M.A. & Tania, M. (2012). Nutritional and medicinal importance of Pleurotus mushroom: An overview. Food Reviews International, 28(3), 313-329. https://doi.org/10.1080/87559129.2011.637267 google scholar
- Laemmli, U.K. (1970). Cleavage of structural proteins during the as-sembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0 google scholar
- Li, Y. R., Liu, Q. H., Wang, H. X. & Ng, T. B. (2008). A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(1), 51-57. https://doi.org/10.1016/j.bbagen.2007.09.004 google scholar
- Lis, H. & Sharon, N. (1972). Soybean (Glycine max) agglutinin. Meth-ods in Enzymology, 28, 360-365. https://doi.org/10.1016/0076-6879(72)28046-6 google scholar
- Lull, C., Wichers, H.J. & Savelkoul, H.F.J. (2005). An-tiinflammatory and immunomodulating properties of fun-gal metabolites. Mediators of Inflammation, 2005(2), 63-80. https://doi.org/10.1155/MI.2005.63 google scholar
- Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D. & Hu, Q. (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 7, 125-133. https://doi.org/10.1016/j.fshw.2018.05.002 google scholar
- Minato, K.-i., Laan, L.C., van Die, I. & Mizuno, M. (2019). Pleu-rotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation. Inter-national Journal of Biological Macromolecules, 122, 705-712. https://doi.org/10.1016/j.ijbiomac.2018.10.157. google scholar
- Mori, K., Kobayashi, C., Tomita, T., Inatomi, S. & Ikeda, M. (2008). Antiatherosclerotic effect of the edible mush-rooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipopro-tein E-deficient mice. Nutrition Research, 28(5), 335-342. https://doi.org/10.1016/j.nutres.2008.03.010 google scholar
- Motta, F., Gershwin, M.E. & Selmi, C. (2021). Mushrooms and immunity. Journal of Autoimmunity, 117, 102576. https://doi.org/10.1016/j.jaut.2020.102576 google scholar
- Muramoto, K. (2017). Lectins as bioactive proteins in foods and feeds. Food Science and Technology Research, 23(4), 487-494. https://doi.org/ 10.3136/fstr.23.487 google scholar
- Muszynska, B., Grzywacz-Kisielewska, A., Kala, K. & Gdula-Argasinska, J. (2018). Anti-inflammatory properties of edi-ble mushrooms: A review. Food Chemistry, 243, 373-381. https://doi.org/10.1016/j.foodchem.2017.09.149 google scholar
- Ngai, P.H. & Ng, T.B. (2006). A hemolysin from the mushroom Pleu-rotus eryngii. Applied Microbiology and Biotechnology, 72, 11851191. https://doi.org/10.1007/s00253-006-0406-6 google scholar
- Nozaki, H., Itonori, S., Sugita, M., Nakamura, K., Ohba, K., Suzuki, A. & Kushi, Y. (2008). Mushroom acidic glycosphingolipid induc-tion of cytokine secretion from murine T cells and proliferation of NK1.1 alpha/beta TCR-double positive cells in vitro. Biochem-ical and Biophysical Research Communications, 373, 435-439. https://doi.org/10.1016/j.bbrc.2008.06.047. google scholar
- Patel, Y., Naraian, R. & Singh, V.K. (2012). Medicinal prop-erties of Pleurotus species (oyster mushroom): A review. World Journal of Fungal and Plant Biology, 3(1), 1-12. https://doi.org/10.5829/idosi.wjfpb.2012.3.1.303 google scholar
- Santos, A.F.S., da Silva, M.D.C., Napoleâo, T.H., Paiva, P.M.G., Correia, S. & Coelho, L.C.B.B. (2014). Lectins: Function, structure, biological properties and potential applications. Cur-rent Topics in Peptide & Protein Research, 15, 41-62. https://doi.org/10.1016/j.carres.2021.108367 google scholar
- Sharon, N. & Lis, H. (1972). Lectins: cell-agglutinating and sugar-specific proteins. Science, 177, 949-958. https://doi.org/10.1126/science.177.4053.949 google scholar
- Sharon, N. & Lis, H. (2004). History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14, 53R-62R. https://doi.org/10.1093/glycob/cwh122 google scholar
- Shibata, T., Kudou, M., Hoshi, Y., Kudo, A., Nanashima, N. & Miyairi, K. (2010). Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edi-ble mushroom, Pleurotus eryngii. Toxicon, 56(8), 1436-1442. https://doi.org/10.1016/j.toxicon.2010.08.010 google scholar
- Singh, R. S., Bhari, R. & Kaur, H.P. (2010). Mushroom lectins: current status and future perspectives. Critical Reviews in Biotechnology, 30(2), 99-126. https://doi.org/10.3109/07388550903365048 google scholar
- Singh, S.S., Wang, H., Chan, Y.S., Pan, W., Dan, X., Yin, C.M., Akkouh, O. & Ng, T.B. (2015). Lectins from edible mushrooms. Molecules, 20, 446-469. https://doi.org/10.3390/molecules20010446 google scholar
- Smiderle, F.R., Olsen, L.M., Carbonero, E.R., Baggio, C.H., Freitas, C.S., Marcon, R., Santos, A.R.S., Gorin, P.A.J., Iacomini, M. google scholar
- (2008). Anti-inflammatory and analgesic properties in a rodent model of a (1->3),(1->6)-linked beta-glucan isolated from Pleu-rotus pulmonarius. European Journal of Pharmacology, 597(1-3), 86-91. https://doi.org/10.1016/j.ejphar.2008.08.028 google scholar
- Sun, Y., Hu, X., &Li,W. (2017). Antioxidant, antitumor and immunos-timulatory activities of the polypeptide from Pleurotus eryngii mycelium. International Journal of Biological Macromolecules, 97, 323-330. https://doi.org/10.1016/j.ijbiomac.2017.01.043 google scholar
- Tanaka, A., Nishimura, M., Sato, Y., Sato, H. & Nishihira, J. (2016). Enhancement of the Th1-phenotype immune system by the in-take of oyster mushroom (Tamogitake) extract in a double-blind, placebo-controlled study. Journal of Traditional and Complemen-tary Medicine, 6, 424-430. https://doi.org/10.1016/j.jtcme.2015. 11.004 google scholar
- Wang, H., Ng, T.B. & Ooi, V.E.C. (1998). Lectins from mushrooms. Mycolocigal Research, 102 (8), 897-906. https://doi.org/10.1017/S0953756298006200 google scholar
- Wang, H., Gao, J. & Ng, T.B. (2000). A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochemi-cal and Biophyical Research Communications, 275, 810-816. https://doi.org/10.1006/bbrc.2000.3373 google scholar
- Wang, H. &Ng. T.B. (2003). Isolation of a novel N-acetylglucosamine-specific lectin from fresh sclerotia of the edible mushroom Pleu-rotus tuber-regium. Protein Expression and Purification, 29(2), 156-160. https://doi.org/10.1016/S1046-5928(03)00059-7 google scholar
- Xu, C.-J., Wang, Y.-X., Niu, B.-N., Liu, B., Li, Y.-B., Wang, X.-M. & Lu, S.-L. (2014). Isolation and characterization of a novel lectin with mitogenic activity from Pleurotus ferulae. Pakistan Journal of Pharmaceutical Sciences, 27 (4), 983-989. google scholar
- Yoon, S.-B., Lee, Y.- J., Park, S.-K., Kim, H.-C., Bae, H., Kim, H. M., Ko, S.-G., Choi, H.Y., Oh, M.S. & Park, W. (2009). Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. Journal of Ethnopharmacology, 125(2), 286-290. https://doi.org/10.1016/j.jep.2009.06.027 google scholar
- Yuan, B., Ma, Ning, Zhao, L., Zhao, E., Gao, Z., Wang, W., Song, M., Zhang, G., Hu, Q. & Xiao, H. (2017a). In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food and Function, 8, 3553-3562. https://doi.org/10.1039/c7fo00895c google scholar
- Yuan, B., Zhao, L., Rakariyatham, K., Han, Y., Gao, Z., Kimatu, B.M., Hu, Q. & Xiao, H. (2017b). Isolation of a novel bioac-tive protein from an edible mushroom Pleurotus eryngii and its inflammatory potential. Food and Function, 8, 2175-2183. http://dx.doi.org/10.1039/c7fo00244k google scholar
- Zaidman, B.-Z., Yassin, M., Mahajna, J. & Wasser, S.P. (2005). Medic-inal mushroom modulators of molecular targets as cancer thera-peutics. Applied Microbiology and Biotechnology, 67, 453-468. http://dx.doi.org/10.1007/s00253-004-1787-z google scholar
Year 2024,
Volume: 54 Issue: 2, 195 - 204, 26.08.2024
Thoiba Mogahid Hussein Seliman
,
Gülsüm Altıparmak Ülbegi
,
Nurten Özsoy
,
Hevidar Alp Kavlo
,
Pınar Aksoy Sağırlı
References
- Akyüz, M. & Kırbağ, S. (2007). Ülkemizde sebze ve meyvelerin yanı sıra alternatif besin kaynağı: yabani mantar (Pleurotus eryngii var. ferulae). Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 8(1), 26-36. http://ofd.artvin.edu.tr/download/article-file/25715 google scholar
- Anjana, S.H. & Savita, J.A. (2017). Oyster mushroom: answer to human ailments. Asian Journal of Phar-maceutical and Clinical Research, 10(4), 24-27. https://doi.org/10.22159/ajpcr.2017.v10i4.16867 google scholar
- Bobek, P., Nosalova, V. & Cerna, S. (2001). Effect of pleuran (beta-glucan from Pleurotus ostreatus) in diet or drinking fluid on colitis in rats. Nahrung, 45(5), 360-363. https://doi.org/10.1002/1521-3803(20011001)45:5<360::AID-FOOD360>3.0.CO;2-C google scholar
- Choi, D. B., Cha, W. S., Kang, S. H. & Lee, B. R. (2004). Effect of Pleurotus ferulae extracts on viability of human lung cancer and cervical cancer cell lines. Biotechnology and Bioprocess Engi-neering, 9, 356-361. https://doi.org/10.1007/BF02933057 google scholar
- Choi, J.H., Kim, D.W., Kim, S., & Kim, S.J. (2017). In vitro antioxidant and in vivo hypolipidemic effects of the king oyster culinary-medicinal mushroom, Pleurotus eryngii var. ferulae DDL01 (Agaricomycetes), in rats with high-fat diet-induced fatty liver and hyperlipidemia. Interna-tional Journal of Medicinal Mushrooms, 19(2), 107-119. https://doi.org/10.1615/IntJMedMushrooms.v19.i2.20 google scholar
- Coelho, L.C.B.B., Silva, P.M.S., Lima, V.L.M., Pontual, E.V., Paiva, P.M.G., Napoleao,T.H. & Correia, M.T.S. (2017). Lectins, interconnecting proteins with biotechnologi-cal/pharmacological and therapeutic applications. Evidence-Based Complementary and Alternative Medicine, 1594074, 1-22. http://dx.doi.org/10.1155/2017/1594074 google scholar
- Dan, X., Liu, W. & Ng, T.B. (2015). Development and applications of lectins as biological tools in biomedi-cal research. Medicinal Research Reviews, 36(2), 221-247. https://doi.org/10.1002/med.21363 google scholar
- El-Deeb, N.M., El-Adawi, H.I., El-Wahab, A.E.A., Haddad, A.M., El Enshasy, H.A.,He, Y.- W. & Davis, K.R. (2019). Modulation of NKG2D, KIR2DL and cytokine production by Pleurotus os-treatus glucan enhances natural killer cell cytotoxicity toward cancer cells. Frontiers in Cell Developmental Biology, 7, 165. https://doi.org/10.3389/fcell.2019.00165. google scholar
- Elhusseiny, S.M., El-Mahdy, T.S., Elleboudy, N.S., Yahia, I.S., Farag, M.M., Ismail, N.S., Yassien, M.A. & Aboshanab, K.M. (2022). In vitro anti SARS-CoV-2 activity and docking analysis of Pleu-rotus ostreatus, Lentinula edodes and Agaricus bisporus edi-ble mushrooms. Infection and Drug Resistance, 15, 3459-3475. https://doi.org/10.2147/IDR.S362823 google scholar
- Guillot, J. & Konska, G. (1997). Lectins in higher fungi. Biochemical Systematics and Ecology, 25, 203-230.https://doi.org/10.1016/S0305-1978(96)00110-X google scholar
- Hassan, M.A.A., Rouf, R., Tiralongo, E., May, T.W. & Tiralongo, J. (2015). Mushroom lectins: Specificity, structure and bioactivity relevant to human disease. International Journal of Molecular Sci-ences, 16(4), 7802-7838. https://doi.org/10.3390/ijms16047802 google scholar
- Hu, S.H., Lien, J.L., Hsieh, S.L., Wang, J.C. & Chang, S.J. (2009). Antioxidant and antigenotoxicity activities of extracts from liquid submerged culture of culinary-medicinal ferula oyster mushroom, Pleurotus eryngii (DC.) Quel. var. ferulae (Lanzi) Sacc. (Agari-comycetideae). International Journal of Medicinal Mushrooms, 11(4), 395-408. https://doi.org/10.1615/IntJMedMushr.v11.i4.60 google scholar
- Jedinak, A., Dudhgaonkar, S., Wu, Q.L., Simon, J. & Sliva, D. (2011). Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-kB and AP-1 signaling. Nutrition Journal, 10, 1-10. https://doi.org/10.1186/1475-2891-10-52 google scholar
- Jo, K.-J., Ghim, J., Kim, J., Lee, H., Lee, T. G., Kim, J.-I., Kim, Y., Byun, J.W., Min, B.S., Son, J.S., Shim, S.G., Cheon, W.J. & Ryu, S.H. (2019). Water extract of Pleurotus eryngii var. ferulae prevents high-fat diet-induced obesity by inhibiting pancreatic lipase. Journal of Medicinal Food, 22(2), 178-185. https://doi.org/10.1089/jmf.2018.4255 google scholar
- Jose, N., Ajith, T.A. & Janardhanan, K.K. (2004). Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation. Phytotherapy Research, 18(1), 43-46. https://doi.org/10.1002/ptr.1355 google scholar
- Khan, M.A. & Tania, M. (2012). Nutritional and medicinal importance of Pleurotus mushroom: An overview. Food Reviews International, 28(3), 313-329. https://doi.org/10.1080/87559129.2011.637267 google scholar
- Laemmli, U.K. (1970). Cleavage of structural proteins during the as-sembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0 google scholar
- Li, Y. R., Liu, Q. H., Wang, H. X. & Ng, T. B. (2008). A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(1), 51-57. https://doi.org/10.1016/j.bbagen.2007.09.004 google scholar
- Lis, H. & Sharon, N. (1972). Soybean (Glycine max) agglutinin. Meth-ods in Enzymology, 28, 360-365. https://doi.org/10.1016/0076-6879(72)28046-6 google scholar
- Lull, C., Wichers, H.J. & Savelkoul, H.F.J. (2005). An-tiinflammatory and immunomodulating properties of fun-gal metabolites. Mediators of Inflammation, 2005(2), 63-80. https://doi.org/10.1155/MI.2005.63 google scholar
- Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D. & Hu, Q. (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 7, 125-133. https://doi.org/10.1016/j.fshw.2018.05.002 google scholar
- Minato, K.-i., Laan, L.C., van Die, I. & Mizuno, M. (2019). Pleu-rotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation. Inter-national Journal of Biological Macromolecules, 122, 705-712. https://doi.org/10.1016/j.ijbiomac.2018.10.157. google scholar
- Mori, K., Kobayashi, C., Tomita, T., Inatomi, S. & Ikeda, M. (2008). Antiatherosclerotic effect of the edible mush-rooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipopro-tein E-deficient mice. Nutrition Research, 28(5), 335-342. https://doi.org/10.1016/j.nutres.2008.03.010 google scholar
- Motta, F., Gershwin, M.E. & Selmi, C. (2021). Mushrooms and immunity. Journal of Autoimmunity, 117, 102576. https://doi.org/10.1016/j.jaut.2020.102576 google scholar
- Muramoto, K. (2017). Lectins as bioactive proteins in foods and feeds. Food Science and Technology Research, 23(4), 487-494. https://doi.org/ 10.3136/fstr.23.487 google scholar
- Muszynska, B., Grzywacz-Kisielewska, A., Kala, K. & Gdula-Argasinska, J. (2018). Anti-inflammatory properties of edi-ble mushrooms: A review. Food Chemistry, 243, 373-381. https://doi.org/10.1016/j.foodchem.2017.09.149 google scholar
- Ngai, P.H. & Ng, T.B. (2006). A hemolysin from the mushroom Pleu-rotus eryngii. Applied Microbiology and Biotechnology, 72, 11851191. https://doi.org/10.1007/s00253-006-0406-6 google scholar
- Nozaki, H., Itonori, S., Sugita, M., Nakamura, K., Ohba, K., Suzuki, A. & Kushi, Y. (2008). Mushroom acidic glycosphingolipid induc-tion of cytokine secretion from murine T cells and proliferation of NK1.1 alpha/beta TCR-double positive cells in vitro. Biochem-ical and Biophysical Research Communications, 373, 435-439. https://doi.org/10.1016/j.bbrc.2008.06.047. google scholar
- Patel, Y., Naraian, R. & Singh, V.K. (2012). Medicinal prop-erties of Pleurotus species (oyster mushroom): A review. World Journal of Fungal and Plant Biology, 3(1), 1-12. https://doi.org/10.5829/idosi.wjfpb.2012.3.1.303 google scholar
- Santos, A.F.S., da Silva, M.D.C., Napoleâo, T.H., Paiva, P.M.G., Correia, S. & Coelho, L.C.B.B. (2014). Lectins: Function, structure, biological properties and potential applications. Cur-rent Topics in Peptide & Protein Research, 15, 41-62. https://doi.org/10.1016/j.carres.2021.108367 google scholar
- Sharon, N. & Lis, H. (1972). Lectins: cell-agglutinating and sugar-specific proteins. Science, 177, 949-958. https://doi.org/10.1126/science.177.4053.949 google scholar
- Sharon, N. & Lis, H. (2004). History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14, 53R-62R. https://doi.org/10.1093/glycob/cwh122 google scholar
- Shibata, T., Kudou, M., Hoshi, Y., Kudo, A., Nanashima, N. & Miyairi, K. (2010). Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edi-ble mushroom, Pleurotus eryngii. Toxicon, 56(8), 1436-1442. https://doi.org/10.1016/j.toxicon.2010.08.010 google scholar
- Singh, R. S., Bhari, R. & Kaur, H.P. (2010). Mushroom lectins: current status and future perspectives. Critical Reviews in Biotechnology, 30(2), 99-126. https://doi.org/10.3109/07388550903365048 google scholar
- Singh, S.S., Wang, H., Chan, Y.S., Pan, W., Dan, X., Yin, C.M., Akkouh, O. & Ng, T.B. (2015). Lectins from edible mushrooms. Molecules, 20, 446-469. https://doi.org/10.3390/molecules20010446 google scholar
- Smiderle, F.R., Olsen, L.M., Carbonero, E.R., Baggio, C.H., Freitas, C.S., Marcon, R., Santos, A.R.S., Gorin, P.A.J., Iacomini, M. google scholar
- (2008). Anti-inflammatory and analgesic properties in a rodent model of a (1->3),(1->6)-linked beta-glucan isolated from Pleu-rotus pulmonarius. European Journal of Pharmacology, 597(1-3), 86-91. https://doi.org/10.1016/j.ejphar.2008.08.028 google scholar
- Sun, Y., Hu, X., &Li,W. (2017). Antioxidant, antitumor and immunos-timulatory activities of the polypeptide from Pleurotus eryngii mycelium. International Journal of Biological Macromolecules, 97, 323-330. https://doi.org/10.1016/j.ijbiomac.2017.01.043 google scholar
- Tanaka, A., Nishimura, M., Sato, Y., Sato, H. & Nishihira, J. (2016). Enhancement of the Th1-phenotype immune system by the in-take of oyster mushroom (Tamogitake) extract in a double-blind, placebo-controlled study. Journal of Traditional and Complemen-tary Medicine, 6, 424-430. https://doi.org/10.1016/j.jtcme.2015. 11.004 google scholar
- Wang, H., Ng, T.B. & Ooi, V.E.C. (1998). Lectins from mushrooms. Mycolocigal Research, 102 (8), 897-906. https://doi.org/10.1017/S0953756298006200 google scholar
- Wang, H., Gao, J. & Ng, T.B. (2000). A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochemi-cal and Biophyical Research Communications, 275, 810-816. https://doi.org/10.1006/bbrc.2000.3373 google scholar
- Wang, H. &Ng. T.B. (2003). Isolation of a novel N-acetylglucosamine-specific lectin from fresh sclerotia of the edible mushroom Pleu-rotus tuber-regium. Protein Expression and Purification, 29(2), 156-160. https://doi.org/10.1016/S1046-5928(03)00059-7 google scholar
- Xu, C.-J., Wang, Y.-X., Niu, B.-N., Liu, B., Li, Y.-B., Wang, X.-M. & Lu, S.-L. (2014). Isolation and characterization of a novel lectin with mitogenic activity from Pleurotus ferulae. Pakistan Journal of Pharmaceutical Sciences, 27 (4), 983-989. google scholar
- Yoon, S.-B., Lee, Y.- J., Park, S.-K., Kim, H.-C., Bae, H., Kim, H. M., Ko, S.-G., Choi, H.Y., Oh, M.S. & Park, W. (2009). Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. Journal of Ethnopharmacology, 125(2), 286-290. https://doi.org/10.1016/j.jep.2009.06.027 google scholar
- Yuan, B., Ma, Ning, Zhao, L., Zhao, E., Gao, Z., Wang, W., Song, M., Zhang, G., Hu, Q. & Xiao, H. (2017a). In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food and Function, 8, 3553-3562. https://doi.org/10.1039/c7fo00895c google scholar
- Yuan, B., Zhao, L., Rakariyatham, K., Han, Y., Gao, Z., Kimatu, B.M., Hu, Q. & Xiao, H. (2017b). Isolation of a novel bioac-tive protein from an edible mushroom Pleurotus eryngii and its inflammatory potential. Food and Function, 8, 2175-2183. http://dx.doi.org/10.1039/c7fo00244k google scholar
- Zaidman, B.-Z., Yassin, M., Mahajna, J. & Wasser, S.P. (2005). Medic-inal mushroom modulators of molecular targets as cancer thera-peutics. Applied Microbiology and Biotechnology, 67, 453-468. http://dx.doi.org/10.1007/s00253-004-1787-z google scholar