Research Article
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 2, 213 - 219, 23.09.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1537248

Abstract

References

  • Abado-Becognee, K., Mobio, T. A., Ennamany, R., Fleurat-Lessard, F., Shier, W. T., Badria, F., & Creppy, E. E. (1998). Cytotoxicity of fumonisin B1: Implication of lipid peroxidation and inhibition of protein and DNA syntheses. Archives of Toxicology, 72(4), 233–236. https://doi.org/10. 1007/s002040050494 google scholar
  • Abel S., & Gelderblom, W. C. (1998). Oxidative damage and fumonisin B1- induced toxicity in primary rat hepatocytes and rat liver in vivo. Toxicology, 131(2-3), 121–31. https://doi.org/10.1016/S0300-483X(98)00123-1 google scholar
  • Abudayyak, M., Karaman, E. F., Guler, Z. R., & Ozden, S. (2023). Effects of perfluorooctanoic acid on endoplasmic reticulum stress and lipid metabolism-related genes in human pancreatic cells. Environmental Toxicology and Pharmacology, 98, 104083. https://doi.org/10.1016/j.etap.2023.104083 google scholar
  • Ahmadnejad, M., Amirizadeh, N., Mehrasa, R., Karkhah, A., Nikougoftar, M., & Oodi, A. (2017). Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Research, 52(1), 25–30. https://doi.org/10.5045/br.2017.52.1.25 google scholar
  • Alley, M. C., Scudiere, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research, 48(3), 589–60. https://pubmed.ncbi.nlm.nih.gov/3335022/ google scholar
  • Arumugam, T., Ghazi, T., & Chuturgoon, A. (2020). Fumonisin B1 epigenetically regulates PTEN expression and modulates DNA damage checkpoint regulation in HepG2 liver cells. Toxins, 12(10), 625. https://doi.org/10.3390/toxins12100625 google scholar
  • Chuturgoon, A. A., Phulukdaree, A., & Moodley, D. (2014). Fumonisin B1 induces global DNA hypomethylation in HepG2 cells - An alternative mechanism of action. Toxicology, 315, 65–69. https://doi.org/10.1016/j.tox.2013.11.004 google scholar
  • Chuturgoon, A. A., Phulukdaree, A., & Moodley, D. (2015). Fumonisin B1 inhibits apoptosis in HepG2 cells by inducing Birc-8/ILP-2. Toxicology Letters, 235(2), 67–74. https://doi.org/10.1016/j.toxlet.2015.03.006 google scholar
  • Cetin, Y., & Bullerman, L. B. (2005). Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Food and Chemical Toxicology, 43(5), 755–764. https://doi.org/10.1016/0278-6915(92)90038-M google scholar
  • Demirel, G., Alpertunga, B., & Ozden, S. (2015). Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. Pharmaceutical Biology, 53(9), 1302–1310. https://doi.org/10.3109/13880209.2014.976714 google scholar
  • Domijan, A. M., & Abramov, A. Y. (2011). Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis—implication to mechanism of cell google scholar
  • toxicity. The International Journal of Biochemistry & Cell Biology, 43(6), 897– 904. https://doi.org/10.1016/j.biocel.2011.03.003 google scholar
  • Dutton, M. (2009). The African Fusarium/maize disease. Mycotoxin Research, 25, 29– 39. https://doi.org/10.1007/s12550-008-0005-8 google scholar
  • Galvano, F., Russo, A., Cardile, V., Galvano, G., Vanella, A., & Renis, M. (2002). DNA damage in human fibroblasts exposed to fumonisin B1. Food and Chemical Toxicology, 40(1), 25–31. https://doi.org/10.1016/S0278-6915(01)00083-7 google scholar
  • Gavino, V. C., Miller, J. S., Ikharebha, S. O., Milo, G. E., & Cornwell, D. G. (1981). Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. Journal of Lipid Research, 22(5), 763 – 9. https://pubmed.ncbi.nlm.nih. gov/7288284/ google scholar
  • Gelderblom, W. C. A., Marasas, W., Thiel, P., Semple, E. & Farber, E. (1989). Possible nongenotoxic nature of active carcinogenic components produced by Fusarium moniliforme. The American Association for Cancer Research, 30, 144 – 147. google scholar
  • Gelderblom, W. C., Kriek, N. P., Marasas, W. F., & Thiel, P. G. (1991a). Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis, 12(7), 1247–1251. https://doi.org/10.1093/carcin/12.7.1247 google scholar
  • Gelderblom, W. C., & Synman, L. (1991b). Mutagenicity of potentially carcinogenic mycotoxins produced by Fusarium moniliforme. Mycotoxin Research, 7(2), 46– 52. https://doi.org/10.1007/BF03192165 google scholar
  • Gelderblom, W. C., Semple, E., Marasas, W. F., & Farber, E. (1992). The cancer-initiating potential of the fumonisin B mycotoxins. Carcinogenesis, 13(3), 433–437. https://doi.org/10.1093/carcin/13.3.433 google scholar
  • Gelderblom, W. C., Snyman, L., Van der Westhuizen, L., & Marasas, W. F. (1995). Mitoinhibitory effect of fumonisin B1 on rat hepatocytes in primary culture. Carcinogenesis, 16(3), 625–631. https://doi.org/10.1093/carcin/16.3.625 google scholar
  • Gelderblom, W. C., Smuts, C. M., Abel, S., Snyman, S. D., Cawood, M. E., Van der West-huizen, L., Swanevelder, S. (1996a). Effect of fumonisin B₁ on protein and lipid synthesis in primary rat hepatocytes. Food and Chemical Toxicology, 34(4), 361–369. https://doi.org/10.1016/0278-6915(96)00107-X google scholar
  • Gelderblom, W. C., Snyman, S., Abel, S., Lebepe-Mazur, S., Smuts, C. M., Van der Westhuizen, L., Marasas, W. F., Victor, T. C., Knasmüller, S., & Huber, W. (1996b). Hepatotoxicity and carcinogenicity of the fumonisins in rats: A review regarding mechanistic implications for establishing risk in humans. Advances in Experimental Medicine and Biology, 392, 279–96. https://pubmed.ncbi.nlm.nih. gov/8850624/ google scholar
  • Gelderblom, W. C. A., Abel, S., Smuts, C. M., Marnewick, J., Marasas, W. F. O., & Lemmer, E. R. (2001). Fumonisin induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environmental Health Perspectives, 109(Suppl 2), 291–300. https://doi.org/10.1289/ehp.01109s2291 google scholar
  • Gelderblom, W. C. A., & Marasas, W. F. A. (2012). Controversies in fumonisin mycotox-icology and risk assessment. Human & Experimental Toxicology, 31(3), 215-35. https://doi.org/10.1177/0960327110395338 google scholar
  • Gu, H., Gao, J., Guo, W., Zhou, Y., & Kong, Q. (2017). The expression of DNA methyltransferases 3A is specifcally downregulated in chorionic villi of early embryo growth arrest cases. Molecular Medicine Reports, 16(1), 591–596. https://doi. org/10.3892/mmr.2017.6650 google scholar
  • Joshi, K., Liu, S., Breslin, S. J. P., & Zhang, J. (2022). Mechanisms that regulate the activities of TET proteins. Cellular and Molecular Life Sciences, 79(7), 363. https:// doi.org/10.1007/s00018-022-04396-x google scholar
  • Kang, Y. J., & Alexander, J. M. (1996). Alterations of the glutathione redox cycle status in fumonisin B1-treated pig kidney cells. Journal of Biochemical Toxicology, 11(3), 121–6. https://doi.org/10.1002/(SICI)1522-7146(1996)11:3<121::AID-JBT3>3.0.CO;2-M google scholar
  • Karaman, E. F., & Ozden, S. (2019). Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Research, 35(3), 309–320. https://doi.org/10.1007/s12550-019-00358-8 google scholar
  • Karaman, E. F., Zeybel, M., & Ozden, S. (2020) Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and alphazearalenol. Toxicology Letters, 326, 52–60. https://doi.org/10.1016/j.toxlet.2020. 02.015 google scholar
  • Karaman, E. F., Abudayyak, M., & Ozden, S. (2023). The role of chromatin‑modifying enzymes and histone modifications in the modulation of p16 gene in fumon- google scholar
  • isin B1‑induced toxicity in human kidney cells. Mycotoxin Research, 39(3), 271– 283. https://doi.org/10.1007/s12550-023-00494-2 google scholar
  • Kellerman, T. S., Marasas, W. F., Pienaar, J. G., & Naudé, T. W. (1972). A mycotoxicosis of equidae caused by Fusarium moniliforme sheldon. A preliminary communication. Onderstepoort Journal of Veterinary Research, 39(4), 205-8. https:// pubmed.ncbi.nlm.nih.gov/4664322/ google scholar
  • Kouadio, J. H., Mobio, T. A., Baudrimont, I., Moukha, S., Dano, S. D., Creppy, E. E. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxyni-valenol, zearalenone or fumonisin B1 in human intestinalcell line Caco-2. Toxicology, 213: 56–65. https://doi.org/10.1016/j.tox.2005.05.010 google scholar
  • Kouadio, J. H., Dano, S. D., Moukha, S., Mobio, T. A., & Creppy, E. E. (2007). Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon, 49(3), 306–317. https://doi.org/10.1016/j. toxicon.2006.09.029 google scholar
  • Lim, C. W., Parker, H. M., Vesonder, R. F., & Haschek, W. M. (1996). Intravenous fumonisin B1 induces cell proliferation and apoptosis in the rat. Natural Toxins, 4(1), 34– 41. https://doi.org/10.1002/19960401NT5 google scholar
  • Marasas, W. F., Kellerman, T. S., Gelderblom, W. C., Coetzer, J. A., Thiel, P. G., & Van der Lugt, J. J. (1988). Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort Journal of Veterinary Research, 55(4), 197-203. https://pubmed.ncbi.nlm.nih.gov/3217091/ google scholar
  • Marasas, W. F. (2001). Discovery and occurrence of the fumonisins: a historical perspective. Environmental Health Perspective, 109(2): 239–243. https://doi.org/10. 1289/ehp.01109s2239 google scholar
  • Matthaios, D., Hountis, P., Karakitsos, P., Bouros, D., & Kakolyris, S. (2013). H2AX a promising biomarker for lung cancer: a review. Cancer Investigation, 31(9), 582– 99. https://doi.org/10.3109/07357907.2013.849721 google scholar
  • McKean, C., Tang, L., Tang, M., Billam, M., Wang, Z., Theodorakis, C. W., Kendall, R. J., & Wang, J. S. (2006). Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food and Chemical Toxicology, 44(6), 868–876. https://doi.org/10.1016/j.fct.2005.11.011 google scholar
  • Mobio, T. A., Anane, R., Baudrimont, I., Carratú, M. R., Shier, T. W., Dano, S. D., Ueno, Y., & Creppy, E. E. (2000). Epigenetic properties of fumonisin B1: cell cycle arrest and DNA base modifcation in C6 glioma cells. Toxicology and Applied Pharmacology, 164(1), 91–96. https://doi.org/10.1006/taap.2000.8893 google scholar
  • Mobio, T. A., Tavan, E., Baudrimont, I., Anane, R., Carratú, M. R., Sanni, A., et al. (2003). Comparative study of the toxic effects of fumonisin B1 in rat C6 gliomacells and p53-null mouse embryo fibroblasts. Toxicology, 183, 65–75. https://doi.org/10. 1016/S0300-483X(02)00441-9 google scholar
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4 google scholar
  • National Toxicology Program (NTP) (2001). Toxicology and Carcinogenesis Studies of Fumonisin B1 (CAS No. 116355-83-0) in F344/N Rats and B6C3F1 mice (Feed Studies). National Toxicology Program technical report series, 496, 1–352. https://pubmed.ncbi.nlm.nih.gov/11852482/ google scholar
  • Norred, W. P., Plattner, R. D., Vesonder, R. F., Bacon, C. W. & Voss, K. A. (1992). Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food and Chemical Toxicology, 30(3), 233 – 237. https://doi.org/10.1016/0278-6915(92)90038-M google scholar
  • Park, D. L., Rua, S. M., Mirocha, C. J., Abd-Alla, E. S., & Wenig, C.Y. (1992). Mutagenic potentials of fumonisin contaminated corn following ammonia decontamination procedure. Mycopathologia, 117, 105–108. https://doi.org/10.1007/BF00497285 google scholar
  • Qiu, M., & Liu, X. (2001). Determination of sphinganine, sphingosine and Sa/So ratio in urine of humans exposed to dietary fumonisin B1. Food Additives & Contaminants, 18, 263–269. https://doi.org/10.1080/02652030117470 google scholar
  • Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 68(5), 2101– 2105. https://doi.org/10.1128/AEM.68.5.2101-2105.2002 google scholar
  • Riley, R. T., Hinton, D. M., Chamberlain, W. J., Bacon, C. W., Wang, E., Merrill, A. H. Jr., & Voss K. A. (1994). Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: a new mechanism of nephrotoxicity. The Journal of Nutrition, 124(4), 594–603. https://doi.org/10.1093/jn/124.4.594 google scholar
  • Riley, R. T., Enongene, E., Voss, K. A., Norred, W. P., Meredith, F. I., Sharma, R. P., Spitsbergen, J., Williams, D. E., Carlson, D. B., & Merrill, A. H. Jr. (2001). Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environmental Health Perspectives, 109(2), 301–308. https://doi.org/10.1289/ehp.01109s2301 google scholar
  • Rosa, S. C., Rufno, A. T., Judas, F., Tenreiro, C., Lopes, M. C., & Mendes, A. F. (2011). Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis and Cartilage, 19(6), 719–727. https://doi.org/10.1016/j.joca.2011.02.004 google scholar
  • Senyildiz, M., Ozden, S. (2015). Alteration in global DNA methylation after bisphenol a exposure in MCF-7 cells. Istanbul Journal of Pharmacy, 45(2), 153–164. google scholar
  • Senyildiz, M., Karaman, E. F., Bas, S. S., Pirincci, P. A., & Ozden, S. (2016). Alteration on global and gene-spesific DNA methylation and global histone modifications in HepG2 cells in response to BPA. Istanbul Journal of Pharmacy, 46(2), 97–114. https://dergipark.org.tr/en/pub/iujfp/issue/27053/284679 google scholar
  • Sancak, D., & Ozden, S. (2015). Global histone modifcations in Fumonisin B1 exposure in rat kidney epithelial cells. Toxicology In Vitro, 29(7), 1809–1815. https://doi. org/10.1016/j.tiv.2015.07.019 google scholar
  • Soriano, J. M., Gonzalez, L., & Catala, A. I. (2005). Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research, 44(6), 345–356. https://doi.org/10.1016/j.plipres.2005.09.001 google scholar
  • Sugiyama, K. I., Kinoshita, M., Furusawa, H., Sato, K., & Honma, M. (2021). Epigenetic effect of the mycotoxin fumonisin B1 on DNA methylation. Mutagenesis, 36(4), 295–30. https://doi.org/10.1093/mutage/geab019 google scholar
  • Sun, G., Wang, S., Hu, X., Su, J., Zhang, Y., Xie, Y., Zhang, H., Tang, L., & Wang, J. S. (2011). Co-contamination of aflatoxin B1 and fumonisin B1 in food and human dietary exposure in three areas of China. Food Additives & Contaminants: Part A Chem Anal Control Expo Risk Assess., 28(4), 461–470. https://doi.org/10.1080/ 19440049.2010.544678 google scholar
  • Stockmann-Juvala, H., Mikkola, J., Naarala, J., Loikkanen, J., Elovaara, E., Savolainen, K. (2004). Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radical Research, 38, 933–942. https://doi.org/ 10.1080/10715760412331273205 google scholar
  • Stockmann- Juvala, H., & Savolainen, K. (2008). A review of the toxic effects and mechanisms of action of fumonisin B1. Human & Experimental Toxicology, 27(11), 799–809. https://doi.org/10.1177/0960327108099525 google scholar
  • Voss, K. A., Chamberlain, W. J., Bacon, C. W., Herbert, R. A., Walters, D. B., & Norred, W. P. (1995). Subchronic feeding study of the mycotoxin fumonisin B1 in B6C3F1 mice and Fischer 344 rats. Toxicological Sciences, 24(1), 102–110. https://doi. org/10.1093/toxsci/24.1.102 google scholar
  • Voss, K. A., Gelineau-van Waes, J. B., & Riley, R.T. (2006). Fumonisins: current research trends in developmental toxicology. Mycotoxin Research, 22(1), 61–69. https:// doi.org/10.1007/BF02954559 google scholar
  • Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., & Merrill, A. H. Jr. (1991). Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. Journal of Biological Chemistry, 266(2), 14486– 14490. https://pubmed.ncbi.nlm.nih.gov/1860857/ google scholar

Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells

Year 2025, Volume: 55 Issue: 2, 213 - 219, 23.09.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1537248

Abstract

Background and Aims: Fumonisin B1 (FB1), which emerges from the contamination of corn and similar products by Fusarium species, causes a high risk for human and animal health.

There are studies showing that FB1 causes carcinogenesis in the kidney and liver, but there is no study yet on the toxic effects of this molecule, which has an effect on lipid metabolism, on the pancreas. Because FB1 shows its toxic effects through nongenotoxic mechanisms, this study aimed to investigate the effects of FB1 on DNA methylation, an important epigenetic biomarker, in human pancreatic epithelial carcinoma cells (PANC-1).

Methods: PANC-1 cells treated with FB1 at concentrations of 10, 50, and 100 µM for 24 h were evaluated for global DNA methylation and expression of DNMT1, DNMT3a, and DNMT3b genes.

Results: It was found that exposure to 100 µM of FB1 increased global DNA methylation by 2.15-fold, however this phenomenon was not found to be associated with the changes in the gene expression of DNMTs.

Conclusion: The findings of this study indicate that high doses (100 µM) of FB1 resulted in global DNA methylation in PANC-1 cells. However, this increase was not associated with a change in the gene expression of DNMT enzymes. Consequently, further research is required to gain a deeper understanding of the epigenetic effects of FB1.

References

  • Abado-Becognee, K., Mobio, T. A., Ennamany, R., Fleurat-Lessard, F., Shier, W. T., Badria, F., & Creppy, E. E. (1998). Cytotoxicity of fumonisin B1: Implication of lipid peroxidation and inhibition of protein and DNA syntheses. Archives of Toxicology, 72(4), 233–236. https://doi.org/10. 1007/s002040050494 google scholar
  • Abel S., & Gelderblom, W. C. (1998). Oxidative damage and fumonisin B1- induced toxicity in primary rat hepatocytes and rat liver in vivo. Toxicology, 131(2-3), 121–31. https://doi.org/10.1016/S0300-483X(98)00123-1 google scholar
  • Abudayyak, M., Karaman, E. F., Guler, Z. R., & Ozden, S. (2023). Effects of perfluorooctanoic acid on endoplasmic reticulum stress and lipid metabolism-related genes in human pancreatic cells. Environmental Toxicology and Pharmacology, 98, 104083. https://doi.org/10.1016/j.etap.2023.104083 google scholar
  • Ahmadnejad, M., Amirizadeh, N., Mehrasa, R., Karkhah, A., Nikougoftar, M., & Oodi, A. (2017). Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Research, 52(1), 25–30. https://doi.org/10.5045/br.2017.52.1.25 google scholar
  • Alley, M. C., Scudiere, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research, 48(3), 589–60. https://pubmed.ncbi.nlm.nih.gov/3335022/ google scholar
  • Arumugam, T., Ghazi, T., & Chuturgoon, A. (2020). Fumonisin B1 epigenetically regulates PTEN expression and modulates DNA damage checkpoint regulation in HepG2 liver cells. Toxins, 12(10), 625. https://doi.org/10.3390/toxins12100625 google scholar
  • Chuturgoon, A. A., Phulukdaree, A., & Moodley, D. (2014). Fumonisin B1 induces global DNA hypomethylation in HepG2 cells - An alternative mechanism of action. Toxicology, 315, 65–69. https://doi.org/10.1016/j.tox.2013.11.004 google scholar
  • Chuturgoon, A. A., Phulukdaree, A., & Moodley, D. (2015). Fumonisin B1 inhibits apoptosis in HepG2 cells by inducing Birc-8/ILP-2. Toxicology Letters, 235(2), 67–74. https://doi.org/10.1016/j.toxlet.2015.03.006 google scholar
  • Cetin, Y., & Bullerman, L. B. (2005). Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Food and Chemical Toxicology, 43(5), 755–764. https://doi.org/10.1016/0278-6915(92)90038-M google scholar
  • Demirel, G., Alpertunga, B., & Ozden, S. (2015). Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. Pharmaceutical Biology, 53(9), 1302–1310. https://doi.org/10.3109/13880209.2014.976714 google scholar
  • Domijan, A. M., & Abramov, A. Y. (2011). Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis—implication to mechanism of cell google scholar
  • toxicity. The International Journal of Biochemistry & Cell Biology, 43(6), 897– 904. https://doi.org/10.1016/j.biocel.2011.03.003 google scholar
  • Dutton, M. (2009). The African Fusarium/maize disease. Mycotoxin Research, 25, 29– 39. https://doi.org/10.1007/s12550-008-0005-8 google scholar
  • Galvano, F., Russo, A., Cardile, V., Galvano, G., Vanella, A., & Renis, M. (2002). DNA damage in human fibroblasts exposed to fumonisin B1. Food and Chemical Toxicology, 40(1), 25–31. https://doi.org/10.1016/S0278-6915(01)00083-7 google scholar
  • Gavino, V. C., Miller, J. S., Ikharebha, S. O., Milo, G. E., & Cornwell, D. G. (1981). Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. Journal of Lipid Research, 22(5), 763 – 9. https://pubmed.ncbi.nlm.nih. gov/7288284/ google scholar
  • Gelderblom, W. C. A., Marasas, W., Thiel, P., Semple, E. & Farber, E. (1989). Possible nongenotoxic nature of active carcinogenic components produced by Fusarium moniliforme. The American Association for Cancer Research, 30, 144 – 147. google scholar
  • Gelderblom, W. C., Kriek, N. P., Marasas, W. F., & Thiel, P. G. (1991a). Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis, 12(7), 1247–1251. https://doi.org/10.1093/carcin/12.7.1247 google scholar
  • Gelderblom, W. C., & Synman, L. (1991b). Mutagenicity of potentially carcinogenic mycotoxins produced by Fusarium moniliforme. Mycotoxin Research, 7(2), 46– 52. https://doi.org/10.1007/BF03192165 google scholar
  • Gelderblom, W. C., Semple, E., Marasas, W. F., & Farber, E. (1992). The cancer-initiating potential of the fumonisin B mycotoxins. Carcinogenesis, 13(3), 433–437. https://doi.org/10.1093/carcin/13.3.433 google scholar
  • Gelderblom, W. C., Snyman, L., Van der Westhuizen, L., & Marasas, W. F. (1995). Mitoinhibitory effect of fumonisin B1 on rat hepatocytes in primary culture. Carcinogenesis, 16(3), 625–631. https://doi.org/10.1093/carcin/16.3.625 google scholar
  • Gelderblom, W. C., Smuts, C. M., Abel, S., Snyman, S. D., Cawood, M. E., Van der West-huizen, L., Swanevelder, S. (1996a). Effect of fumonisin B₁ on protein and lipid synthesis in primary rat hepatocytes. Food and Chemical Toxicology, 34(4), 361–369. https://doi.org/10.1016/0278-6915(96)00107-X google scholar
  • Gelderblom, W. C., Snyman, S., Abel, S., Lebepe-Mazur, S., Smuts, C. M., Van der Westhuizen, L., Marasas, W. F., Victor, T. C., Knasmüller, S., & Huber, W. (1996b). Hepatotoxicity and carcinogenicity of the fumonisins in rats: A review regarding mechanistic implications for establishing risk in humans. Advances in Experimental Medicine and Biology, 392, 279–96. https://pubmed.ncbi.nlm.nih. gov/8850624/ google scholar
  • Gelderblom, W. C. A., Abel, S., Smuts, C. M., Marnewick, J., Marasas, W. F. O., & Lemmer, E. R. (2001). Fumonisin induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environmental Health Perspectives, 109(Suppl 2), 291–300. https://doi.org/10.1289/ehp.01109s2291 google scholar
  • Gelderblom, W. C. A., & Marasas, W. F. A. (2012). Controversies in fumonisin mycotox-icology and risk assessment. Human & Experimental Toxicology, 31(3), 215-35. https://doi.org/10.1177/0960327110395338 google scholar
  • Gu, H., Gao, J., Guo, W., Zhou, Y., & Kong, Q. (2017). The expression of DNA methyltransferases 3A is specifcally downregulated in chorionic villi of early embryo growth arrest cases. Molecular Medicine Reports, 16(1), 591–596. https://doi. org/10.3892/mmr.2017.6650 google scholar
  • Joshi, K., Liu, S., Breslin, S. J. P., & Zhang, J. (2022). Mechanisms that regulate the activities of TET proteins. Cellular and Molecular Life Sciences, 79(7), 363. https:// doi.org/10.1007/s00018-022-04396-x google scholar
  • Kang, Y. J., & Alexander, J. M. (1996). Alterations of the glutathione redox cycle status in fumonisin B1-treated pig kidney cells. Journal of Biochemical Toxicology, 11(3), 121–6. https://doi.org/10.1002/(SICI)1522-7146(1996)11:3<121::AID-JBT3>3.0.CO;2-M google scholar
  • Karaman, E. F., & Ozden, S. (2019). Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Research, 35(3), 309–320. https://doi.org/10.1007/s12550-019-00358-8 google scholar
  • Karaman, E. F., Zeybel, M., & Ozden, S. (2020) Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and alphazearalenol. Toxicology Letters, 326, 52–60. https://doi.org/10.1016/j.toxlet.2020. 02.015 google scholar
  • Karaman, E. F., Abudayyak, M., & Ozden, S. (2023). The role of chromatin‑modifying enzymes and histone modifications in the modulation of p16 gene in fumon- google scholar
  • isin B1‑induced toxicity in human kidney cells. Mycotoxin Research, 39(3), 271– 283. https://doi.org/10.1007/s12550-023-00494-2 google scholar
  • Kellerman, T. S., Marasas, W. F., Pienaar, J. G., & Naudé, T. W. (1972). A mycotoxicosis of equidae caused by Fusarium moniliforme sheldon. A preliminary communication. Onderstepoort Journal of Veterinary Research, 39(4), 205-8. https:// pubmed.ncbi.nlm.nih.gov/4664322/ google scholar
  • Kouadio, J. H., Mobio, T. A., Baudrimont, I., Moukha, S., Dano, S. D., Creppy, E. E. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxyni-valenol, zearalenone or fumonisin B1 in human intestinalcell line Caco-2. Toxicology, 213: 56–65. https://doi.org/10.1016/j.tox.2005.05.010 google scholar
  • Kouadio, J. H., Dano, S. D., Moukha, S., Mobio, T. A., & Creppy, E. E. (2007). Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon, 49(3), 306–317. https://doi.org/10.1016/j. toxicon.2006.09.029 google scholar
  • Lim, C. W., Parker, H. M., Vesonder, R. F., & Haschek, W. M. (1996). Intravenous fumonisin B1 induces cell proliferation and apoptosis in the rat. Natural Toxins, 4(1), 34– 41. https://doi.org/10.1002/19960401NT5 google scholar
  • Marasas, W. F., Kellerman, T. S., Gelderblom, W. C., Coetzer, J. A., Thiel, P. G., & Van der Lugt, J. J. (1988). Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort Journal of Veterinary Research, 55(4), 197-203. https://pubmed.ncbi.nlm.nih.gov/3217091/ google scholar
  • Marasas, W. F. (2001). Discovery and occurrence of the fumonisins: a historical perspective. Environmental Health Perspective, 109(2): 239–243. https://doi.org/10. 1289/ehp.01109s2239 google scholar
  • Matthaios, D., Hountis, P., Karakitsos, P., Bouros, D., & Kakolyris, S. (2013). H2AX a promising biomarker for lung cancer: a review. Cancer Investigation, 31(9), 582– 99. https://doi.org/10.3109/07357907.2013.849721 google scholar
  • McKean, C., Tang, L., Tang, M., Billam, M., Wang, Z., Theodorakis, C. W., Kendall, R. J., & Wang, J. S. (2006). Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food and Chemical Toxicology, 44(6), 868–876. https://doi.org/10.1016/j.fct.2005.11.011 google scholar
  • Mobio, T. A., Anane, R., Baudrimont, I., Carratú, M. R., Shier, T. W., Dano, S. D., Ueno, Y., & Creppy, E. E. (2000). Epigenetic properties of fumonisin B1: cell cycle arrest and DNA base modifcation in C6 glioma cells. Toxicology and Applied Pharmacology, 164(1), 91–96. https://doi.org/10.1006/taap.2000.8893 google scholar
  • Mobio, T. A., Tavan, E., Baudrimont, I., Anane, R., Carratú, M. R., Sanni, A., et al. (2003). Comparative study of the toxic effects of fumonisin B1 in rat C6 gliomacells and p53-null mouse embryo fibroblasts. Toxicology, 183, 65–75. https://doi.org/10. 1016/S0300-483X(02)00441-9 google scholar
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4 google scholar
  • National Toxicology Program (NTP) (2001). Toxicology and Carcinogenesis Studies of Fumonisin B1 (CAS No. 116355-83-0) in F344/N Rats and B6C3F1 mice (Feed Studies). National Toxicology Program technical report series, 496, 1–352. https://pubmed.ncbi.nlm.nih.gov/11852482/ google scholar
  • Norred, W. P., Plattner, R. D., Vesonder, R. F., Bacon, C. W. & Voss, K. A. (1992). Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food and Chemical Toxicology, 30(3), 233 – 237. https://doi.org/10.1016/0278-6915(92)90038-M google scholar
  • Park, D. L., Rua, S. M., Mirocha, C. J., Abd-Alla, E. S., & Wenig, C.Y. (1992). Mutagenic potentials of fumonisin contaminated corn following ammonia decontamination procedure. Mycopathologia, 117, 105–108. https://doi.org/10.1007/BF00497285 google scholar
  • Qiu, M., & Liu, X. (2001). Determination of sphinganine, sphingosine and Sa/So ratio in urine of humans exposed to dietary fumonisin B1. Food Additives & Contaminants, 18, 263–269. https://doi.org/10.1080/02652030117470 google scholar
  • Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 68(5), 2101– 2105. https://doi.org/10.1128/AEM.68.5.2101-2105.2002 google scholar
  • Riley, R. T., Hinton, D. M., Chamberlain, W. J., Bacon, C. W., Wang, E., Merrill, A. H. Jr., & Voss K. A. (1994). Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: a new mechanism of nephrotoxicity. The Journal of Nutrition, 124(4), 594–603. https://doi.org/10.1093/jn/124.4.594 google scholar
  • Riley, R. T., Enongene, E., Voss, K. A., Norred, W. P., Meredith, F. I., Sharma, R. P., Spitsbergen, J., Williams, D. E., Carlson, D. B., & Merrill, A. H. Jr. (2001). Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environmental Health Perspectives, 109(2), 301–308. https://doi.org/10.1289/ehp.01109s2301 google scholar
  • Rosa, S. C., Rufno, A. T., Judas, F., Tenreiro, C., Lopes, M. C., & Mendes, A. F. (2011). Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis and Cartilage, 19(6), 719–727. https://doi.org/10.1016/j.joca.2011.02.004 google scholar
  • Senyildiz, M., Ozden, S. (2015). Alteration in global DNA methylation after bisphenol a exposure in MCF-7 cells. Istanbul Journal of Pharmacy, 45(2), 153–164. google scholar
  • Senyildiz, M., Karaman, E. F., Bas, S. S., Pirincci, P. A., & Ozden, S. (2016). Alteration on global and gene-spesific DNA methylation and global histone modifications in HepG2 cells in response to BPA. Istanbul Journal of Pharmacy, 46(2), 97–114. https://dergipark.org.tr/en/pub/iujfp/issue/27053/284679 google scholar
  • Sancak, D., & Ozden, S. (2015). Global histone modifcations in Fumonisin B1 exposure in rat kidney epithelial cells. Toxicology In Vitro, 29(7), 1809–1815. https://doi. org/10.1016/j.tiv.2015.07.019 google scholar
  • Soriano, J. M., Gonzalez, L., & Catala, A. I. (2005). Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research, 44(6), 345–356. https://doi.org/10.1016/j.plipres.2005.09.001 google scholar
  • Sugiyama, K. I., Kinoshita, M., Furusawa, H., Sato, K., & Honma, M. (2021). Epigenetic effect of the mycotoxin fumonisin B1 on DNA methylation. Mutagenesis, 36(4), 295–30. https://doi.org/10.1093/mutage/geab019 google scholar
  • Sun, G., Wang, S., Hu, X., Su, J., Zhang, Y., Xie, Y., Zhang, H., Tang, L., & Wang, J. S. (2011). Co-contamination of aflatoxin B1 and fumonisin B1 in food and human dietary exposure in three areas of China. Food Additives & Contaminants: Part A Chem Anal Control Expo Risk Assess., 28(4), 461–470. https://doi.org/10.1080/ 19440049.2010.544678 google scholar
  • Stockmann-Juvala, H., Mikkola, J., Naarala, J., Loikkanen, J., Elovaara, E., Savolainen, K. (2004). Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radical Research, 38, 933–942. https://doi.org/ 10.1080/10715760412331273205 google scholar
  • Stockmann- Juvala, H., & Savolainen, K. (2008). A review of the toxic effects and mechanisms of action of fumonisin B1. Human & Experimental Toxicology, 27(11), 799–809. https://doi.org/10.1177/0960327108099525 google scholar
  • Voss, K. A., Chamberlain, W. J., Bacon, C. W., Herbert, R. A., Walters, D. B., & Norred, W. P. (1995). Subchronic feeding study of the mycotoxin fumonisin B1 in B6C3F1 mice and Fischer 344 rats. Toxicological Sciences, 24(1), 102–110. https://doi. org/10.1093/toxsci/24.1.102 google scholar
  • Voss, K. A., Gelineau-van Waes, J. B., & Riley, R.T. (2006). Fumonisins: current research trends in developmental toxicology. Mycotoxin Research, 22(1), 61–69. https:// doi.org/10.1007/BF02954559 google scholar
  • Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., & Merrill, A. H. Jr. (1991). Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. Journal of Biological Chemistry, 266(2), 14486– 14490. https://pubmed.ncbi.nlm.nih.gov/1860857/ google scholar
There are 61 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Toxicology
Journal Section Original Article
Authors

Gizem Sena Elagöz 0009-0009-5614-1877

Sibel Özden 0000-0002-1662-2504

Publication Date September 23, 2025
Submission Date August 26, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2025 Volume: 55 Issue: 2

Cite

APA Elagöz, G. S., & Özden, S. (2025). Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells. İstanbul Journal of Pharmacy, 55(2), 213-219. https://doi.org/10.26650/IstanbulJPharm.2025.1537248
AMA Elagöz GS, Özden S. Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells. iujp. September 2025;55(2):213-219. doi:10.26650/IstanbulJPharm.2025.1537248
Chicago Elagöz, Gizem Sena, and Sibel Özden. “Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells”. İstanbul Journal of Pharmacy 55, no. 2 (September 2025): 213-19. https://doi.org/10.26650/IstanbulJPharm.2025.1537248.
EndNote Elagöz GS, Özden S (September 1, 2025) Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells. İstanbul Journal of Pharmacy 55 2 213–219.
IEEE G. S. Elagöz and S. Özden, “Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells”, iujp, vol. 55, no. 2, pp. 213–219, 2025, doi: 10.26650/IstanbulJPharm.2025.1537248.
ISNAD Elagöz, Gizem Sena - Özden, Sibel. “Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells”. İstanbul Journal of Pharmacy 55/2 (September2025), 213-219. https://doi.org/10.26650/IstanbulJPharm.2025.1537248.
JAMA Elagöz GS, Özden S. Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells. iujp. 2025;55:213–219.
MLA Elagöz, Gizem Sena and Sibel Özden. “Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells”. İstanbul Journal of Pharmacy, vol. 55, no. 2, 2025, pp. 213-9, doi:10.26650/IstanbulJPharm.2025.1537248.
Vancouver Elagöz GS, Özden S. Potential Impacts of FB1 Exposure on Global DNA Methylation in Pancreatic Cells. iujp. 2025;55(2):213-9.