BibTex RIS Cite

-

Year 2014, Volume: 40 Issue: 1, 14 - 19, 03.01.2014

Abstract

The aim of the present study was to investigate and determine concentrations of some heavy metals in the cattle metacarpal bones, found from Azmashka settlement hill. They belonged to four periods: Early Neolith (EN), Early Halkolith (EH), Late Halkolith (LH) and Early Bronze (EB). The natural bone material was obtained from the archaeological site Azmashka village mound, found 6 km east of Stara Zagora (Bulgaria) and also from the territory of Hrishteni village, following radiocarbonic analysis. In the sampling an atomic absorption spectrophotometry was used. The samples have been burned dry and dissolved in acid until solution with optimal element concentration. Higher concentrations of iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), lead (Pb), chrome (Cr) and magnesium (Mg) were observed. The quantity of Fe, Cu, Zn, Mn and Pb were with higher values at Early Halkolith, compared to the same in the other periods. The highest heavy metals’ concentrations were found, as following: iron, cooper, manganese, lead – at Early Halkolith and zink, chrome and magnesium – at Late Halkolith. The lowest heavy metals’ concentrations were found, as following: iron, manganese, chrome, magnesium – at Early Neolith and cooper, zink and lead– at Early Bronze. Differences in the other elements’ concentrations from the studied periods weren’t significant. Qualitative differences influenced by the heavy metals in the bone structure weren’t found. The content of heavy metals in the studied metacarpal bone material is considerably high compare to the normal values, mentioned by some researchers studied other species. The trend of concentration increasing is from Early Neolith to Early Bronze. This is due to the metacarpal bone contamination with soil, as which has been polluted from many years by the industrial manufacture of the nitrogen fertilizer.

References

  • Berna, F., Matthews, A., Weiner, S., 2004. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science 31, 867-8
  • Bohn, H., McNeal, B., O’Connor, G., 1985. Soil Chemistry. Wiley Interscience, John Wiley & Sons, Inc, New York.
  • Drasch, G., 1982. Lead burden in prehistorical, historical and modern human bones. Science of the Total Environment 24 (3), 199-231.
  • Eneva, C., Todorova, M., 2004. Content of heavy metals leached cinnamon forest soils in the Agrobiochim EAD-Stara Zagora. Journal of Agricultural Science and Forest Science 3 (2), 65Ericson, J., 1985. Strontium isotope characterization in the study of prehistoric human ecology. Journal оf Human Evolution 14 (5), 503-514.
  • Kalisińska, E., Salicki, W., Kavetska, K., Ligoki, M., 200 Trace metal concentrations are higher in cartilage than in bones of scaup and pochard wintering in Poland. Science of the Total Environment 388 (1-3), 90-103. Keeley, H., Hudson, G., Evans, J., 1977. Trace element content of human bone in various states of preservation: 1, The soil silhouette. Journal of Archaeological Science 4, 19-24.
  • Klepinger, L., 1984. Nutritional assessment from bone. Annual Review of Anthropology 13, 75-96.
  • Kumar, R., Shoab, S., Fakruccin, K., Ahmad, A., 200 Identification of trace elements in bovine metacarpus bone by spectro chemical analysis. Journal of King Abdulaziz University Science 20 (2), 17-26. Kyle, J., 1986. Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth - the implications for palaeodietary research. Journal of Archaeological Science 13 (5), 403-416.
  • Lambert, J., Simpson, S., Szpunar, C., Buikstra, J., 19 Ancient human diet from inorganic analysis of bone. Accounts of Chemical Research 17 (9), 298-305. Lambert, J., Szpunar, C., Buikstra, J., 1979. Chemical analysis of excavated human bone from Middle and Late Woodland sites. Archaeometry 21 (2), 115-129.
  • Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48 (2), 385-390.
  • Luz, B., Kolodny, Y., Howowitz, M., 1984. Fractionation of oxygen isotopes between mammalian bone phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48 (8), 1689-1693. Martiniaková, M., Omelka, R., Jančová, A., Stawarz, R., Formicki, G., 20 Concentrations of Selected Heavy Metals in Bones and Femoral Bone Structure of Bank (Myodes glareolus) and Common (Microtus arvalis) Voles from Different Polluted Biotopes in Slovakia. Archives of Environmental Contamination and Toxicology 60 (3), 524-532. Milnes, A., Hutton, J., 1983. The Soils; an Australian Viewpoint: Calcretes in Australia. CSIRO, Melbourne/Academic Press, London.
  • Nelson, D., Sauer, N., 1984. An evaluation of postdepositional changes in the trace element content of human bone. American Antiquity 49 (1), 141-l47.
  • Oakley, K., 1969. Analytical methods of dating bones. In: Brothwell, D., Higgs, E., (Ed), Science in Archaeology. New York, Thames and Hudson, pp. 35-45.
  • O'Dell, B., Elsden, D., Thomas, J., Partridge, S., Smith, R., Palmer, R., 1966. Inhibition of the biosynthesis of cross links in elastin by a lathyrogen. Nature 209, 401-402.
  • Price, T., Schoeninger, M., Armelagos, G., 1985. Bone chemistry and past behavior: an overview. Journal of Human Evolution 14 (5), 419-447.
  • Rai, D., Behari, J., 1986. Biophysical characterization of osteoporotic bone. Fluorescence spectra and morphology of bone. Environmental Research 40 (1), 68-83.
  • Schiffmann, E., Corcoran, B., Martin, G., 1966. The role of complexed heavy metals in initiating the mineralization of ‘elastin’ and the precipitation of mineral from solution. Archives of Biochemistry and Biophysics 115 (1), 87-94.
  • Statistica 7.0, 2004. Copyright © 1984-2004. StatSoft. Inc, Tulsa, Oklahoma, USA. Taylor, R., 19 Radiocarbon Dating: An Archaeological Perspective. Academic Press, New York.
  • Waldron, H., Khera, A., Walker, G., Wibberley, G., Green, C.H., 1979. Lead concentrations in bones and soil. Journal of Archaeological Science 6 (3), 295-298.
  • Waldron, H., 1983. On the post - mortem accumulation of lead by skeletal tissues. Journal of Archaeological Science 10 (1), 35-40.

Some Heavy Metals' Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill

Year 2014, Volume: 40 Issue: 1, 14 - 19, 03.01.2014

Abstract

ABSTRACT

The aim of the present study was to investigate and determine concentrations of some heavy metals in the cattle metacarpal bones, found from Azmashka settlement hill. They belonged to four periods: Early Neolith (EN), Early Halkolith (EH), Late Halkolith (LH) and Early Bronze (EB). The natural bone material was obtained from the archaeological site Azmashka village mound, found 6 km east of Stara Zagora (Bulgaria) and also from the territory of Hrishteni village, following radiocarbonic analysis. In the sampling an atomic absorption spectrophotometry was used. The samples have been burned dry and dissolved in acid until solution with optimal element concentration. Higher concentrations of iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), lead (Pb), chrome (Cr) and magnesium (Mg) were observed. The quantity of Fe, Cu, Zn, Mn and Pb were with higher values at Early Halkolith, compared to the same in the other periods. The highest heavy metals' concentrations were found, as following: iron, cooper, manganese, lead – at Early Halkolith and zink, chrome and magnesium – at Late Halkolith. The lowest heavy metals' concentrations were found, as following: iron, manganese, chrome, magnesium – at Early Neolith and cooper, zink and lead– at Early Bronze. Differences in the other elements' concentrations from the studied periods weren't significant. Qualitative differences influenced by the heavy metals in the bone structure weren't found. The content of heavy metals in the studied metacarpal bone material is considerably high compare to the normal values, mentioned by some researchers studied other species. The trend of concentration increasing is from Early Neolith to Early Bronze. This is due to the metacarpal bone contamination with soil, as which has been polluted from many years by the industrial manufacture of the nitrogen fertilizer.

Key Words: Heavy metal, bones, osteoarchaeology

ÖZET

 

AZMASHKA YERLEŞİM HÖYÜĞÜNDEKİ PALEONTOLOJİK SIĞIRLARIN METAKARPAL KEMİKLERİNDE BAZI AĞIR METALLERİN KONSANTRASYONLARI

Bu çalışmanın amacı Azmashka yerleşim tepesinde bulunan sığır metacarpal kemiklerindeki bazı ağır metal konsantrasyonlarının tespitinin araştırılmasıdır. Kemikler dört döneme aitti: Erken Neolitik (EN), Erken Kalkolitik (EH), Geç Kalkolitik (LH) ve Erken Tunç (EB). Doğal kemik materyali Stara Zagora'nın 6 km doğusunda bulunan Azmaska köyü höyüğündeki arkeolojikal alandan ve ayrıca Hrishteni köyü bölgesinden temin edildi ve aşağıdaki radyokarbon analizleri yapıldı. Örneklemede atomik absorbsiyon spektrofotometresi kullanıldı. Örnekler solüsyonda uygun element konsantrasyonuna ulaşıncaya kadar kuru ve çözünmüş asit içerisinde yakıldı. Yüksek konsantrasyonda demir (Fe), bakır (Cu), çinko (Zn), manganez (Mn), kurşun (Pb), Krom (Cr) ve magnezyum (Mg) tespit edildi. Fe, Cu, Zn, Mn ve Pb değerlerinin erken kalkolitik dönemde, diğer dönemler ile karşılaştırıldığında yüksek düzeyde olduğu bulundu. En yüksek ağır metal konsantrasyonları şu şekilde bulundu: demir, bakır, manganez ve kurşun- Erken Kalkolitik ve çinko, krom ve magnezyum- geç kalkolitik dönem. En düşük ağır metal konsantrasyonları şu şekilde bulundu: demir, manganez, krom, magnezyum-erken Neolitik ve bakır, çinko ile kurşun-Erken Tunç. Çalışma kapsamındaki dönemlerde diğer elementlere ait konsantrasyonların farklılıkları önemli bulunmamıştır. Kemik yapısında ağır metallerin etki ettiği kalitatif farklılıklar bulunmamıştır. Bu çalışmadaki kemik materyalinde ağır metal düzeyi, bazı araştırmacıların çalıştığı diğer türlerdeki normal değerlerin üzerindedir. Konsantrasyonların yükselme eğilimi erken Neolitik'ten Erken Tunç dönemine doğrudur. Uzun yıllardır endüstriyal azotlu gübre sanayii üretimi ile kirlenmeden dolayı metakarpal kemikler, kum ile kontamine olmuştur.

Anahtar Kelimeler: Ağır metal, kemikler, osteoarkeoloji

References

  • Berna, F., Matthews, A., Weiner, S., 2004. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science 31, 867-8
  • Bohn, H., McNeal, B., O’Connor, G., 1985. Soil Chemistry. Wiley Interscience, John Wiley & Sons, Inc, New York.
  • Drasch, G., 1982. Lead burden in prehistorical, historical and modern human bones. Science of the Total Environment 24 (3), 199-231.
  • Eneva, C., Todorova, M., 2004. Content of heavy metals leached cinnamon forest soils in the Agrobiochim EAD-Stara Zagora. Journal of Agricultural Science and Forest Science 3 (2), 65Ericson, J., 1985. Strontium isotope characterization in the study of prehistoric human ecology. Journal оf Human Evolution 14 (5), 503-514.
  • Kalisińska, E., Salicki, W., Kavetska, K., Ligoki, M., 200 Trace metal concentrations are higher in cartilage than in bones of scaup and pochard wintering in Poland. Science of the Total Environment 388 (1-3), 90-103. Keeley, H., Hudson, G., Evans, J., 1977. Trace element content of human bone in various states of preservation: 1, The soil silhouette. Journal of Archaeological Science 4, 19-24.
  • Klepinger, L., 1984. Nutritional assessment from bone. Annual Review of Anthropology 13, 75-96.
  • Kumar, R., Shoab, S., Fakruccin, K., Ahmad, A., 200 Identification of trace elements in bovine metacarpus bone by spectro chemical analysis. Journal of King Abdulaziz University Science 20 (2), 17-26. Kyle, J., 1986. Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth - the implications for palaeodietary research. Journal of Archaeological Science 13 (5), 403-416.
  • Lambert, J., Simpson, S., Szpunar, C., Buikstra, J., 19 Ancient human diet from inorganic analysis of bone. Accounts of Chemical Research 17 (9), 298-305. Lambert, J., Szpunar, C., Buikstra, J., 1979. Chemical analysis of excavated human bone from Middle and Late Woodland sites. Archaeometry 21 (2), 115-129.
  • Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48 (2), 385-390.
  • Luz, B., Kolodny, Y., Howowitz, M., 1984. Fractionation of oxygen isotopes between mammalian bone phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48 (8), 1689-1693. Martiniaková, M., Omelka, R., Jančová, A., Stawarz, R., Formicki, G., 20 Concentrations of Selected Heavy Metals in Bones and Femoral Bone Structure of Bank (Myodes glareolus) and Common (Microtus arvalis) Voles from Different Polluted Biotopes in Slovakia. Archives of Environmental Contamination and Toxicology 60 (3), 524-532. Milnes, A., Hutton, J., 1983. The Soils; an Australian Viewpoint: Calcretes in Australia. CSIRO, Melbourne/Academic Press, London.
  • Nelson, D., Sauer, N., 1984. An evaluation of postdepositional changes in the trace element content of human bone. American Antiquity 49 (1), 141-l47.
  • Oakley, K., 1969. Analytical methods of dating bones. In: Brothwell, D., Higgs, E., (Ed), Science in Archaeology. New York, Thames and Hudson, pp. 35-45.
  • O'Dell, B., Elsden, D., Thomas, J., Partridge, S., Smith, R., Palmer, R., 1966. Inhibition of the biosynthesis of cross links in elastin by a lathyrogen. Nature 209, 401-402.
  • Price, T., Schoeninger, M., Armelagos, G., 1985. Bone chemistry and past behavior: an overview. Journal of Human Evolution 14 (5), 419-447.
  • Rai, D., Behari, J., 1986. Biophysical characterization of osteoporotic bone. Fluorescence spectra and morphology of bone. Environmental Research 40 (1), 68-83.
  • Schiffmann, E., Corcoran, B., Martin, G., 1966. The role of complexed heavy metals in initiating the mineralization of ‘elastin’ and the precipitation of mineral from solution. Archives of Biochemistry and Biophysics 115 (1), 87-94.
  • Statistica 7.0, 2004. Copyright © 1984-2004. StatSoft. Inc, Tulsa, Oklahoma, USA. Taylor, R., 19 Radiocarbon Dating: An Archaeological Perspective. Academic Press, New York.
  • Waldron, H., Khera, A., Walker, G., Wibberley, G., Green, C.H., 1979. Lead concentrations in bones and soil. Journal of Archaeological Science 6 (3), 295-298.
  • Waldron, H., 1983. On the post - mortem accumulation of lead by skeletal tissues. Journal of Archaeological Science 10 (1), 35-40.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Dimitar Kostov This is me

Rosen Dımıtrov This is me

Kamelia Stamatova-yovcheva This is me

Alexandar Atanasov This is me

Penka Yonkova This is me

Diana Vladova This is me

Radoslav Mıhaylov This is me

David Yovchev This is me

Publication Date January 3, 2014
Published in Issue Year 2014 Volume: 40 Issue: 1

Cite

APA Kostov, D., Dımıtrov, R., Stamatova-yovcheva, K., Atanasov, A., et al. (2014). Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 40(1), 14-19. https://doi.org/10.16988/iuvfd.50600
AMA Kostov D, Dımıtrov R, Stamatova-yovcheva K, Atanasov A, Yonkova P, Vladova D, Mıhaylov R, Yovchev D. Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill. iuvfd. January 2014;40(1):14-19. doi:10.16988/iuvfd.50600
Chicago Kostov, Dimitar, Rosen Dımıtrov, Kamelia Stamatova-yovcheva, Alexandar Atanasov, Penka Yonkova, Diana Vladova, Radoslav Mıhaylov, and David Yovchev. “Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill”. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 40, no. 1 (January 2014): 14-19. https://doi.org/10.16988/iuvfd.50600.
EndNote Kostov D, Dımıtrov R, Stamatova-yovcheva K, Atanasov A, Yonkova P, Vladova D, Mıhaylov R, Yovchev D (January 1, 2014) Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 40 1 14–19.
IEEE D. Kostov, “Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill”, iuvfd, vol. 40, no. 1, pp. 14–19, 2014, doi: 10.16988/iuvfd.50600.
ISNAD Kostov, Dimitar et al. “Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill”. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 40/1 (January 2014), 14-19. https://doi.org/10.16988/iuvfd.50600.
JAMA Kostov D, Dımıtrov R, Stamatova-yovcheva K, Atanasov A, Yonkova P, Vladova D, Mıhaylov R, Yovchev D. Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill. iuvfd. 2014;40:14–19.
MLA Kostov, Dimitar et al. “Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill”. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, vol. 40, no. 1, 2014, pp. 14-19, doi:10.16988/iuvfd.50600.
Vancouver Kostov D, Dımıtrov R, Stamatova-yovcheva K, Atanasov A, Yonkova P, Vladova D, Mıhaylov R, Yovchev D. Some Heavy Metals’ Concentrations in the Metacarpal Bones of Paleontological Cattle from Azmashka Settlement Hill. iuvfd. 2014;40(1):14-9.