Review
BibTex RIS Cite

Sağlık Sektöründe Karar Destek Araçları: İş Zekâsı, Makine Öğrenmesi, Derin Öğrenme ve Yapay Zeka Uygulamaları

Year 2024, Volume: 6 Issue: 2, 90 - 115
https://doi.org/10.47899/ijss.1591168

Abstract

Bilgi ve iletişim teknolojileri tüm sektörleri olduğu gibi sağlık sektörünü de dönüştürmekte ve şekillendirmektedir. Bu muazzam dönüşüm içinde her geçen gün sağlık sektörü yönetim süreçlerinden günlük operasyonel süreçlerine kadar bilgi ve iletişim teknolojilerinden faydalanmakta ve karar süreçlerinde teknolojinin imkanlarından faydalanmaktadır. Çalışmamız kapsamında son yıllarda sağlık sektöründe önemi gittikçe artan iki farklı teknolojik gelişmeyi karar destek aracı olarak kapsamlı bir şekilde değerlendirmekteyiz. Yapay zeka ve iş zekası teknolojileri merkeze alınarak bu iki önemli kavramın kavramsal boyutları, sağlık sektörü için oluşturduğu değer kapsamlı bir şekilde değerlendirilmektedir. Yapay zeka içerisinde, makine öğrenmesi ve derin öğrenme gibi iki kritik kavram da değerlendirilmektedir. Makine öğrenmesi, yapay zeka, derin öğrenme ve iş zekası konuları pek çok farklı çalışmada farklı başlıklarda değerlendirmiştir. Fakat literatürde ilgili teknolojileri toplu olarak kapsamlı bir şekilde değerlendiren bir çalışmaya rastlanmamıştır. Aynı zamanda ilgili konu başlıklarının sağlık bilimleri alanında tartışıldığı bir çalışmaya da rastlanmamıştır. Çalışmamız bu boşluğu gidermeyi hedeflemektedir. Özellikle son yıllarda pek çok ülkenin yapay zeka konusunda önemli yatırımlar yaptığı günümüz koşullarında Türkiye’de bir ekonomik çıktı olarak yapay zeka uygulamaları konusunda ne tür kazanımlar elde edebileceğimizi konu kapsamında değerlendirilmektedir. Geleceğe dönük sağlık politikaları için kural koyucular ve politika yürütücüleri için çözüm önerileri ve örnek uygulama önerileri ortaya konmaktadır.

Thanks

Muhammet Damar, TÜBİTAK 2219 Uluslararası Doktora Sonrası Araştırma Burs Programı kapsamında Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir. Toronto Üniversitesi'ndeki Upstream Lab, MAP, Li Ka Shing Knowledge Institute'a mükemmel misafirperverliği için teşekkür ederiz.

References

  • Ahmad, M. B., Ayagi, S. H., & Musa, U. F. (2023). Using artificial intelligence (AI) technology in the health sector has several goals. Global Journal of Research in Engineering & Computer Sciences, 3(5),31-35.
  • Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D., & Doyle, A. G. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science, 360(6385), 186-190.
  • Ain, N., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success–A systematic literature review. Decision Support Systems, 125, 113113.
  • Alkhwaldi, A. F. (2024). Understanding the acceptance of business intelligence from healthcare professionals’ perspective: An empirical study of healthcare organizations. International Journal of Organizational Analysis, 32(9), 2135-2163.
  • Alkronz, E. S., Moghayer, K. A., Meimeh, M., Gazzaz, M., Abu-Nasser, B. S., & Abu-Naser, S. S. (2019). Prediction of whether mushroom is edible or poisonous using back-propagation neural network. International Journal of Academic and Applied Research (IJAAR) 3(2): 1-8.
  • Almadhoun, H. R., & Abu-Naser, S. S. (2018). Banana knowledge based system diagnosis and treatment. International Journal of Academic Pedagogical Research (IJAPR), 2(7), 1-11.
  • Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689.
  • Alzamily, J. Y., Bakeer, H., Almadhoun, H., Abunasser, B. S., & Abu-Naser, S. S. (2024). Artificial Intelligence in Healthcare: Transforming Patient Care and Medical Practices. International Journal of Academic Engineering Research (IJAER) 8 (8):1-9.
  • Annapurani, K., Poovammal, E., Ruvinga, C., & Venkat, I. (2021). Healthcare Data Analytics Using Business Intelligence Tool. In Machine Learning and Analytics in Healthcare Systems (pp. 191-212). CRC Press.
  • Ashrafi, N., Kelleher, L., & Kuilboer, J. P. (2014). The impact of business intelligence on healthcare delivery in the USA. Interdisciplinary Journal of Information, Knowledge, and Management, 9, 117.
  • Ayvaz, E. (2017). Stratejik maliyet yönetimi ve iş zekâsı. AJIT-e: Academic Journal of Information Technology, 8(28), 7-20.
  • Azzi, S., Gagnon, S., Ramirez, A., & Richards, G. (2020). Healthcare applications of artificial intelligence and analytics: a review and proposed framework. Applied Sciences, 10(18), 6553.
  • Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: transforming the practice of medicine. Future healthcare journal, 8(2), e188-e194.
  • Boddu, R. S. K., Ahamad, S., Kumar, K. P., Ramalingam, M., Pallathadka, L. K., & Tupas, F. P. (2022). Analysis of robotics, artificial intelligence and machine learning in the field of healthcare sector. Materials Today: Proceedings, 56, 2323-2327.
  • Byrnes, J. P. (2002). The development of decision-making. Journal of adolescent health, 31(6), 208-215.
  • Celik, B., Damar, M., Bilik, O., Ozdagoglu, G., Ozdagoglu, A., & Damar, H. T. (2023). Scientometric analysis of nursing research on hip fracture: trends, topics, and profiles. Acta Paulista de Enfermagem, 36, eAPE026132.
  • Chauhan, M., & Degan, K.S. (2024). The Intervention of Artificial Intelligence in the Healthcare Sector: Trends and Challenges. In: Singh, P.K., Trovati, M., Murtagh, F., Atiquzzaman, M., Farid, M. (eds) Data Science and Artificial Intelligence for Digital Healthcare. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-56818-3_16
  • Chen, M., & Decary, M. (2020). Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare management forum, 33(1), 10-18.
  • Chen, Y., Yang, O., Sampat, C., Bhalode, P., Ramachandran, R., & Ierapetritou, M. (2020). Digital twins in pharmaceutical and biopharmaceutical manufacturing: a literature review. Processes, 8(9), 1088.
  • Churi, P., Pawar, A. V., & Abdulmuhsin, A. A. (2021). Perception of privacy issues and awareness in health-care knowledge management systems: empirical study in Indian health-care context. International Journal of Organizational Analysis, 30(5), 1100-1119.
  • Cohen, I. G., & Mello, M. M. (2018). HIPAA and protecting health information in the 21st century. Jama, 320(3), 231-232.
  • Damar, M, Özdağoğlu, G., & Saso, L. (2022). Designing a business intelligence-based monitoring platform for evaluating research collaborations within university networks: the case of UNICA - the Network of Universities from the Capitals of Europe. Information Research, 27(4), paper 945.
  • Damar, M. (2021). Endüstri 4.0 Çağında Yükseköğretim Kurulumları İçin Tedarik Zinciri Yönetiminde Bir İş Zekâsı Karar Destek Sistemi Uygulaması. İzmir Sosyal Bilimler Dergisi, 3(2), 144-158.
  • Damar, M. (2022). Yazılım sektörünün iki lider ülkesi Hindistan ve İrlanda, gelişmekte olan ülkeler için öneriler. Ege Eğitim Teknolojileri Dergisi, 6(1), 29-52.
  • Damar, M. (2022a). How do Iranian and Turkish Researchers Collaborate? Business Intelligence based Decision Support Tool for Monitoring the Scientific Collaborations. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler FakültesiDergisi (Online), 24(2), 684-707.
  • Damar, M. (2022b). Student mobility management system and business intelligence solution for higher education institutions. Üniversite Araştırmaları Dergisi, 5(3), 263-275.
  • Damar, M., & Karaman, D. (2021). Açık Veri ve İş Zekâsı Teknolojisi: İstanbul Büyükşehir Belediyesi Dava Verileri Üzerine Bir Değerlendirme. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 5(2), 206-228.
  • Damar, M., & Ozdagoglu, G. (2021). Yazılım Sektörü ve Uluslararasılaşma, Politika Önerileri. Editör Ömer Aydın, Çağdaş Cegiz, Teknoloji ve Uluslararası İlişkiler. Ankara: Nobel Kitap Evi.
  • Damar, M., Özdağoğlu, G., & Aydın, Ö. (2023). Yükseköğretimde Kurumlarının Bilimsel Yayın ve Yayıncılık Faaliyetlerinin Ulusal Ölçekte Değerlendirilmesi: TR Dizin Üzerinden Bir İş Zekası Uygulaması. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 7(2), 196-230.
  • Damar, M., Özdağoğlu, G., & Özdağoğlu, A. (2018). İş zekasını ve ilgili teknolojileri konu alan araştırmalara küresel ölçekte bilimetrik bakış. Bilgi Ekonomisi ve Yönetimi Dergisi, 13(2), 197-217.
  • Damar, M., Özen, A., Çakmak, Ü. E., Özoğuz, E., & Erenay, F. S. (2024). Super AI, Generative AI, Narrow AI and Chatbots: An Assessment of Artificial Intelligence Technologies for The Public Sector and Public Administration. Journal of AI, 8(1), 83-106.
  • Dave, M., & Patel, N. (2023). Artificial intelligence in healthcare and education. British dental journal, 234(10), 761-764.
  • Elbanna, S. (2006). Strategic decision‐making: Process perspectives. international Journal of Management reviews, 8(1), 1-20.
  • Eren, A. & Kaya, M. D. (2019). İş Zekâsı Sistemlerinde Karar Verme Başarısının İncelenmesi. Business & Management Studies: An International Journal, 7(5), 2148-2176.
  • Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29.
  • Fuchs, M., Abadzhiev, A., Svensson, B., Höpken, W., & Lexhagen, M. (2013). A knowledge destination framework for tourism sustainability: A business intelligence application from Sweden. Tourism: An International Interdisciplinary Journal, 61(2), 121-148.
  • Gerke, S., Minssen, T., &Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artif Intell Healthcare. (2020) 295–336.
  • Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y. (2016), Deep Learning, Cambridge: MIT press.
  • Gorry, G. A., & Scott Morton, M. S. (1971). A framework for management information systems. Sloan Management Review, 13(1),55-70.
  • Gökşen, Y., Damar, M., & Doğan, O. (2016). Building Management Information Systems To coordinate The University Business Processes Aproposed Model for Dokuz Eylül Unıversity. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 30(2), 361-374.
  • He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature medicine, 25(1), 30-36.
  • Hedgebeth, D. (2007). Data‐driven decision making for the enterprise: an overview of business intelligence applications. Vine, 37(4), 414-420.
  • Jinpon, P., Jaroensutasinee, M., & Jaroensutasinee, K. (2011). Business Intelligence And Its Applications In The Public Healthcare System. Walailak Journal Of Science And Technology (Wjst), 8(2), 97-110.
  • Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., ... & Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. Clinical and translational science, 14(1), 86-93.
  • Ka, K., & Khokhlov, A. L. (2024). Ethical Issues In Implementing Artificial Intelligence In Healthcare. МЕДИЦИНСКАЯ ЭТИКА, 11.
  • Kagiyama, N., Shrestha, S., Farjo, P. D., & Sengupta, P. P. (2019). Artificial intelligence: practical primer for clinical research in cardiovascular disease. Journal of the American Heart Association, 8(17), e012788.
  • Kassania, S. H., Kassanib, P. H., Wesolowskic, M. J., Schneidera, K. A., & Detersa, R. (2021). Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: a machine learning based approach. Biocybernetics and Biomedical Engineering, 41(3), 867-879.
  • Kolachalama, V. B. (2022). Machine learning and pre-medical education. Artificial intelligence in medicine, 129, 102313.
  • Kulkov, I. (2023). Next-generation business models for artificial intelligence start-ups in the healthcare industry. International Journal of Entrepreneurial Behavior & Research, 29(4), 860-885.
  • Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial intelligence in healthcare: review, ethics, trust challenges & future research directions. Engineering Applications of Artificial Intelligence, 120, 105894.
  • Lu, M., Yin, J., Zhu, Q., Lin, G., Mou, M., Liu, F., ... & Zhu, F. (2023). Artificial intelligence in pharmaceutical sciences. Engineering, 27, 37-69.
  • Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug discovery today, 24(3), 773-780.
  • Manikiran, S. S., & Prasanthi, N. L. (2019). Artificial intelligence: milestones and role in pharma and healthcare sector. Pharma times, 51, 9-56.
  • Masters, K. (2019). Artificial intelligence in medical education. Medical Teacher, 41(9), 976-980.
  • Means, B., Salas, E., Crandall, B., & Jacobs, T. O. (1993). Training decision makers for the real world. Edited by Gary A. Klein, Judith Orasanu, Roberta Calderwood, Caroline E. Zsambok. Decision making in action: Models and methods. NewJersey: Ablex Publishing Corporation.
  • Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ digital medicine, 6(1), 120.
  • Mettler, T., & Vimarlund, V. (2009). Understanding business intelligence in the context of healthcare. Health informatics journal, 15(3), 254-264.
  • Miah, S. J. (2018). A demand-driven cloud-based business intelligence for healthcare decision making. In Health Care Delivery and Clinical Science: Concepts, Methodologies, Tools, and Applications (pp. 964-979). IGI Global.
  • Miller, D. D., & Brown, E. W. (2018). Artificial intelligence in medical practice: the question to the answer?. The American journal of medicine, 131(2), 129-133.
  • Naik, N., Hameed, B. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., ... & Somani, B. K. (2022). Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility?. Frontiers in surgery, 9, 862322.
  • Nallamothu, P. T., & Cuthrell, K. M. (2023). Artificial Intelligence in Health Sector: Current Status and Future Perspectives. Asian Journal of Research in Computer Science, 15(4), 1-14.
  • Nicolas, R. (2004). Knowledge management impacts on decision making process. Journal of knowledge management, 8(1), 20-31.
  • Nutt, P. C. (2008). Investigating the success of decision making processes. Journal of management studies, 45(2), 425-455.
  • Olszak, C. M., & Batko, K. (2012). Business Intelligence Systems. New Chances And Possibilities For Healthcare Organizations. Business Informatics/Informatyka Ekonomiczna, 3(25), 123-138.
  • Olszak, C. M., & Ziemba, E. (2007). Approach to building and implementing business intelligence systems. Interdisciplinary Journal of Information, Knowledge, and Management, 2(1), 135-148.
  • Palaniappan, K., Lin, E. Y. T., & Vogel, S. (2024). Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector. Healthcare, 12(5), 562.
  • Pinto dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., ... & Baeßler, B. (2019). Medical students' attitude towards artificial intelligence: a multicentre survey. European radiology, 29, 1640-1646.
  • Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare uses of artificial intelligence: Challenges and opportunities for growth. Healthcare management forum, 32(5), 272-275.
  • Ramalingam, S., Subramanian, M., Reddy, A. S., Tarakaramu, N., Khan, M. I., Abdullaev, S., & Dhahbi, S. (2024). Exploring business intelligence applications in the healthcare industry: A comprehensive analysis. Egyptian Informatics Journal, 25, 100438.
  • Redrup Hill, E., Mitchell, C., Brigden, T., & Hall, A. (2023). Ethical and legal considerations influencing human involvement in the implementation of artificial intelligence in a clinical pathway: A multi-stakeholder perspective. Frontiers in digital health, 5, 1139210.
  • Rodrigues, R. (2020). Legal and human rights issues of AI: Gaps, challenges and vulnerabilities. Journal of Responsible Technology, 4, 100005.
  • Rosemann, A., & Zhang, X. (2022). Exploring the social, ethical, legal, and responsibility dimensions of artificial intelligence for health-a new column in Intelligent Medicine. Intelligent Medicine, 2(02), 103-109.
  • Safwan, E. R., Meredith, R., & Burstein, F. (2016). Business Intelligence (BI) system evolution: a case in a healthcare institution. Journal of Decision Systems, 25(sup1), 463-475.
  • Sapci, A. H., & Sapci, H. A. (2020). Artificial intelligence education and tools for medical and health informatics students: systematic review. JMIR Medical Education, 6(1), e19285.
  • Sharda, R., Delen, D., & Turban, E. (2014). Business intelligence and analytics: systems for decision support. Pearson.
  • Tableau (2023), “Business intelligence: a complete overview”, available at: https://www.tableau.com/business-intelligence/what-is-business-intelligence#:%E2%88%BC:text=Further%20learning-,What%20is%20business%20intelligence%3F,make%20more%20data%2Ddriven%20decisions
  • Thomasian, N. M., Eickhoff, C., & Adashi, E. Y. (2021). Advancing health equity with artificial intelligence. Journal of public health policy, 42(4), 602.
  • Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56.
  • Turing, A.M. Computing machinery and intelligence. In Parsing the Turing Test; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–65.
  • Wang, J., & Li, J. (2024). Artificial intelligence empowering public health education: prospects and challenges. Frontiers in Public Health, 12, 1389026.
  • Williams, S., & Williams, N. (2003). The business value of business intelligence. Business Intelligence Journal, 8, 30-39.
  • Yates, J. F. (2003). Decision management: How to assure better decisions in your company. San Francisco: John Wiley & Sons.
  • Yuan, B., & Li, J. (2019). The policy effect of the General Data Protection Regulation (GDPR) on the digital public health sector in the European Union: an empirical investigation. International journal of environmental research and public health, 16(6), 1070.
  • Zandi, D., Reis, A., Vayena, E., & Goodman, K. (2019). New ethical challenges of digital technologies, machine learning and artificial intelligence in public health: a call for papers. Bulletin of the World Health Organization, 97(1), 2-2.

Decision Support Tools in the Health Sector: Business Intelligence, Machine Learning, Deep Learning, and Artificial Intelligence Applications

Year 2024, Volume: 6 Issue: 2, 90 - 115
https://doi.org/10.47899/ijss.1591168

Abstract

Information and communication technologies (ICT) are transforming and shaping the healthcare sector, as they are in all industries. In this immense transformation, the healthcare sector is increasingly utilizing ICT in management processes, daily operational procedures, and decision-making processes. This study comprehensively evaluates two significant technological advancements, which have gained increasing importance in recent years within the healthcare sector, as decision support tools. Artificial intelligence (AI) and business intelligence (BI) technologies are at the center of this evaluation, focusing on their conceptual dimensions and the value they create for the healthcare sector. Within AI, two critical concepts, machine learning and deep learning, are also discussed. Machine learning, AI, deep learning, and business intelligence have been addressed in numerous studies under various topics. However, there has been no study in the literature that comprehensively evaluates these technologies collectively. Additionally, no research has been found that discusses these topics specifically within the field of health sciences. This study aims to fill this gap. In light of the significant investments many countries have made in AI in recent years, this study also explores the potential economic benefits Turkey could achieve through AI applications. It presents solutions and example applications for policymakers and policy implementers regarding future healthcare policies.

Thanks

Muhammet Damar, TÜBİTAK 2219 Uluslararası Doktora Sonrası Araştırma Burs Programı kapsamında Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir. Toronto Üniversitesi'ndeki Upstream Lab, MAP, Li Ka Shing Knowledge Institute'a mükemmel misafirperverliği için teşekkür ederiz.

References

  • Ahmad, M. B., Ayagi, S. H., & Musa, U. F. (2023). Using artificial intelligence (AI) technology in the health sector has several goals. Global Journal of Research in Engineering & Computer Sciences, 3(5),31-35.
  • Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D., & Doyle, A. G. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science, 360(6385), 186-190.
  • Ain, N., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success–A systematic literature review. Decision Support Systems, 125, 113113.
  • Alkhwaldi, A. F. (2024). Understanding the acceptance of business intelligence from healthcare professionals’ perspective: An empirical study of healthcare organizations. International Journal of Organizational Analysis, 32(9), 2135-2163.
  • Alkronz, E. S., Moghayer, K. A., Meimeh, M., Gazzaz, M., Abu-Nasser, B. S., & Abu-Naser, S. S. (2019). Prediction of whether mushroom is edible or poisonous using back-propagation neural network. International Journal of Academic and Applied Research (IJAAR) 3(2): 1-8.
  • Almadhoun, H. R., & Abu-Naser, S. S. (2018). Banana knowledge based system diagnosis and treatment. International Journal of Academic Pedagogical Research (IJAPR), 2(7), 1-11.
  • Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689.
  • Alzamily, J. Y., Bakeer, H., Almadhoun, H., Abunasser, B. S., & Abu-Naser, S. S. (2024). Artificial Intelligence in Healthcare: Transforming Patient Care and Medical Practices. International Journal of Academic Engineering Research (IJAER) 8 (8):1-9.
  • Annapurani, K., Poovammal, E., Ruvinga, C., & Venkat, I. (2021). Healthcare Data Analytics Using Business Intelligence Tool. In Machine Learning and Analytics in Healthcare Systems (pp. 191-212). CRC Press.
  • Ashrafi, N., Kelleher, L., & Kuilboer, J. P. (2014). The impact of business intelligence on healthcare delivery in the USA. Interdisciplinary Journal of Information, Knowledge, and Management, 9, 117.
  • Ayvaz, E. (2017). Stratejik maliyet yönetimi ve iş zekâsı. AJIT-e: Academic Journal of Information Technology, 8(28), 7-20.
  • Azzi, S., Gagnon, S., Ramirez, A., & Richards, G. (2020). Healthcare applications of artificial intelligence and analytics: a review and proposed framework. Applied Sciences, 10(18), 6553.
  • Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: transforming the practice of medicine. Future healthcare journal, 8(2), e188-e194.
  • Boddu, R. S. K., Ahamad, S., Kumar, K. P., Ramalingam, M., Pallathadka, L. K., & Tupas, F. P. (2022). Analysis of robotics, artificial intelligence and machine learning in the field of healthcare sector. Materials Today: Proceedings, 56, 2323-2327.
  • Byrnes, J. P. (2002). The development of decision-making. Journal of adolescent health, 31(6), 208-215.
  • Celik, B., Damar, M., Bilik, O., Ozdagoglu, G., Ozdagoglu, A., & Damar, H. T. (2023). Scientometric analysis of nursing research on hip fracture: trends, topics, and profiles. Acta Paulista de Enfermagem, 36, eAPE026132.
  • Chauhan, M., & Degan, K.S. (2024). The Intervention of Artificial Intelligence in the Healthcare Sector: Trends and Challenges. In: Singh, P.K., Trovati, M., Murtagh, F., Atiquzzaman, M., Farid, M. (eds) Data Science and Artificial Intelligence for Digital Healthcare. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-56818-3_16
  • Chen, M., & Decary, M. (2020). Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare management forum, 33(1), 10-18.
  • Chen, Y., Yang, O., Sampat, C., Bhalode, P., Ramachandran, R., & Ierapetritou, M. (2020). Digital twins in pharmaceutical and biopharmaceutical manufacturing: a literature review. Processes, 8(9), 1088.
  • Churi, P., Pawar, A. V., & Abdulmuhsin, A. A. (2021). Perception of privacy issues and awareness in health-care knowledge management systems: empirical study in Indian health-care context. International Journal of Organizational Analysis, 30(5), 1100-1119.
  • Cohen, I. G., & Mello, M. M. (2018). HIPAA and protecting health information in the 21st century. Jama, 320(3), 231-232.
  • Damar, M, Özdağoğlu, G., & Saso, L. (2022). Designing a business intelligence-based monitoring platform for evaluating research collaborations within university networks: the case of UNICA - the Network of Universities from the Capitals of Europe. Information Research, 27(4), paper 945.
  • Damar, M. (2021). Endüstri 4.0 Çağında Yükseköğretim Kurulumları İçin Tedarik Zinciri Yönetiminde Bir İş Zekâsı Karar Destek Sistemi Uygulaması. İzmir Sosyal Bilimler Dergisi, 3(2), 144-158.
  • Damar, M. (2022). Yazılım sektörünün iki lider ülkesi Hindistan ve İrlanda, gelişmekte olan ülkeler için öneriler. Ege Eğitim Teknolojileri Dergisi, 6(1), 29-52.
  • Damar, M. (2022a). How do Iranian and Turkish Researchers Collaborate? Business Intelligence based Decision Support Tool for Monitoring the Scientific Collaborations. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler FakültesiDergisi (Online), 24(2), 684-707.
  • Damar, M. (2022b). Student mobility management system and business intelligence solution for higher education institutions. Üniversite Araştırmaları Dergisi, 5(3), 263-275.
  • Damar, M., & Karaman, D. (2021). Açık Veri ve İş Zekâsı Teknolojisi: İstanbul Büyükşehir Belediyesi Dava Verileri Üzerine Bir Değerlendirme. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 5(2), 206-228.
  • Damar, M., & Ozdagoglu, G. (2021). Yazılım Sektörü ve Uluslararasılaşma, Politika Önerileri. Editör Ömer Aydın, Çağdaş Cegiz, Teknoloji ve Uluslararası İlişkiler. Ankara: Nobel Kitap Evi.
  • Damar, M., Özdağoğlu, G., & Aydın, Ö. (2023). Yükseköğretimde Kurumlarının Bilimsel Yayın ve Yayıncılık Faaliyetlerinin Ulusal Ölçekte Değerlendirilmesi: TR Dizin Üzerinden Bir İş Zekası Uygulaması. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 7(2), 196-230.
  • Damar, M., Özdağoğlu, G., & Özdağoğlu, A. (2018). İş zekasını ve ilgili teknolojileri konu alan araştırmalara küresel ölçekte bilimetrik bakış. Bilgi Ekonomisi ve Yönetimi Dergisi, 13(2), 197-217.
  • Damar, M., Özen, A., Çakmak, Ü. E., Özoğuz, E., & Erenay, F. S. (2024). Super AI, Generative AI, Narrow AI and Chatbots: An Assessment of Artificial Intelligence Technologies for The Public Sector and Public Administration. Journal of AI, 8(1), 83-106.
  • Dave, M., & Patel, N. (2023). Artificial intelligence in healthcare and education. British dental journal, 234(10), 761-764.
  • Elbanna, S. (2006). Strategic decision‐making: Process perspectives. international Journal of Management reviews, 8(1), 1-20.
  • Eren, A. & Kaya, M. D. (2019). İş Zekâsı Sistemlerinde Karar Verme Başarısının İncelenmesi. Business & Management Studies: An International Journal, 7(5), 2148-2176.
  • Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29.
  • Fuchs, M., Abadzhiev, A., Svensson, B., Höpken, W., & Lexhagen, M. (2013). A knowledge destination framework for tourism sustainability: A business intelligence application from Sweden. Tourism: An International Interdisciplinary Journal, 61(2), 121-148.
  • Gerke, S., Minssen, T., &Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artif Intell Healthcare. (2020) 295–336.
  • Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y. (2016), Deep Learning, Cambridge: MIT press.
  • Gorry, G. A., & Scott Morton, M. S. (1971). A framework for management information systems. Sloan Management Review, 13(1),55-70.
  • Gökşen, Y., Damar, M., & Doğan, O. (2016). Building Management Information Systems To coordinate The University Business Processes Aproposed Model for Dokuz Eylül Unıversity. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 30(2), 361-374.
  • He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature medicine, 25(1), 30-36.
  • Hedgebeth, D. (2007). Data‐driven decision making for the enterprise: an overview of business intelligence applications. Vine, 37(4), 414-420.
  • Jinpon, P., Jaroensutasinee, M., & Jaroensutasinee, K. (2011). Business Intelligence And Its Applications In The Public Healthcare System. Walailak Journal Of Science And Technology (Wjst), 8(2), 97-110.
  • Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., ... & Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. Clinical and translational science, 14(1), 86-93.
  • Ka, K., & Khokhlov, A. L. (2024). Ethical Issues In Implementing Artificial Intelligence In Healthcare. МЕДИЦИНСКАЯ ЭТИКА, 11.
  • Kagiyama, N., Shrestha, S., Farjo, P. D., & Sengupta, P. P. (2019). Artificial intelligence: practical primer for clinical research in cardiovascular disease. Journal of the American Heart Association, 8(17), e012788.
  • Kassania, S. H., Kassanib, P. H., Wesolowskic, M. J., Schneidera, K. A., & Detersa, R. (2021). Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: a machine learning based approach. Biocybernetics and Biomedical Engineering, 41(3), 867-879.
  • Kolachalama, V. B. (2022). Machine learning and pre-medical education. Artificial intelligence in medicine, 129, 102313.
  • Kulkov, I. (2023). Next-generation business models for artificial intelligence start-ups in the healthcare industry. International Journal of Entrepreneurial Behavior & Research, 29(4), 860-885.
  • Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial intelligence in healthcare: review, ethics, trust challenges & future research directions. Engineering Applications of Artificial Intelligence, 120, 105894.
  • Lu, M., Yin, J., Zhu, Q., Lin, G., Mou, M., Liu, F., ... & Zhu, F. (2023). Artificial intelligence in pharmaceutical sciences. Engineering, 27, 37-69.
  • Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug discovery today, 24(3), 773-780.
  • Manikiran, S. S., & Prasanthi, N. L. (2019). Artificial intelligence: milestones and role in pharma and healthcare sector. Pharma times, 51, 9-56.
  • Masters, K. (2019). Artificial intelligence in medical education. Medical Teacher, 41(9), 976-980.
  • Means, B., Salas, E., Crandall, B., & Jacobs, T. O. (1993). Training decision makers for the real world. Edited by Gary A. Klein, Judith Orasanu, Roberta Calderwood, Caroline E. Zsambok. Decision making in action: Models and methods. NewJersey: Ablex Publishing Corporation.
  • Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ digital medicine, 6(1), 120.
  • Mettler, T., & Vimarlund, V. (2009). Understanding business intelligence in the context of healthcare. Health informatics journal, 15(3), 254-264.
  • Miah, S. J. (2018). A demand-driven cloud-based business intelligence for healthcare decision making. In Health Care Delivery and Clinical Science: Concepts, Methodologies, Tools, and Applications (pp. 964-979). IGI Global.
  • Miller, D. D., & Brown, E. W. (2018). Artificial intelligence in medical practice: the question to the answer?. The American journal of medicine, 131(2), 129-133.
  • Naik, N., Hameed, B. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., ... & Somani, B. K. (2022). Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility?. Frontiers in surgery, 9, 862322.
  • Nallamothu, P. T., & Cuthrell, K. M. (2023). Artificial Intelligence in Health Sector: Current Status and Future Perspectives. Asian Journal of Research in Computer Science, 15(4), 1-14.
  • Nicolas, R. (2004). Knowledge management impacts on decision making process. Journal of knowledge management, 8(1), 20-31.
  • Nutt, P. C. (2008). Investigating the success of decision making processes. Journal of management studies, 45(2), 425-455.
  • Olszak, C. M., & Batko, K. (2012). Business Intelligence Systems. New Chances And Possibilities For Healthcare Organizations. Business Informatics/Informatyka Ekonomiczna, 3(25), 123-138.
  • Olszak, C. M., & Ziemba, E. (2007). Approach to building and implementing business intelligence systems. Interdisciplinary Journal of Information, Knowledge, and Management, 2(1), 135-148.
  • Palaniappan, K., Lin, E. Y. T., & Vogel, S. (2024). Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector. Healthcare, 12(5), 562.
  • Pinto dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., ... & Baeßler, B. (2019). Medical students' attitude towards artificial intelligence: a multicentre survey. European radiology, 29, 1640-1646.
  • Racine, E., Boehlen, W., & Sample, M. (2019). Healthcare uses of artificial intelligence: Challenges and opportunities for growth. Healthcare management forum, 32(5), 272-275.
  • Ramalingam, S., Subramanian, M., Reddy, A. S., Tarakaramu, N., Khan, M. I., Abdullaev, S., & Dhahbi, S. (2024). Exploring business intelligence applications in the healthcare industry: A comprehensive analysis. Egyptian Informatics Journal, 25, 100438.
  • Redrup Hill, E., Mitchell, C., Brigden, T., & Hall, A. (2023). Ethical and legal considerations influencing human involvement in the implementation of artificial intelligence in a clinical pathway: A multi-stakeholder perspective. Frontiers in digital health, 5, 1139210.
  • Rodrigues, R. (2020). Legal and human rights issues of AI: Gaps, challenges and vulnerabilities. Journal of Responsible Technology, 4, 100005.
  • Rosemann, A., & Zhang, X. (2022). Exploring the social, ethical, legal, and responsibility dimensions of artificial intelligence for health-a new column in Intelligent Medicine. Intelligent Medicine, 2(02), 103-109.
  • Safwan, E. R., Meredith, R., & Burstein, F. (2016). Business Intelligence (BI) system evolution: a case in a healthcare institution. Journal of Decision Systems, 25(sup1), 463-475.
  • Sapci, A. H., & Sapci, H. A. (2020). Artificial intelligence education and tools for medical and health informatics students: systematic review. JMIR Medical Education, 6(1), e19285.
  • Sharda, R., Delen, D., & Turban, E. (2014). Business intelligence and analytics: systems for decision support. Pearson.
  • Tableau (2023), “Business intelligence: a complete overview”, available at: https://www.tableau.com/business-intelligence/what-is-business-intelligence#:%E2%88%BC:text=Further%20learning-,What%20is%20business%20intelligence%3F,make%20more%20data%2Ddriven%20decisions
  • Thomasian, N. M., Eickhoff, C., & Adashi, E. Y. (2021). Advancing health equity with artificial intelligence. Journal of public health policy, 42(4), 602.
  • Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56.
  • Turing, A.M. Computing machinery and intelligence. In Parsing the Turing Test; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–65.
  • Wang, J., & Li, J. (2024). Artificial intelligence empowering public health education: prospects and challenges. Frontiers in Public Health, 12, 1389026.
  • Williams, S., & Williams, N. (2003). The business value of business intelligence. Business Intelligence Journal, 8, 30-39.
  • Yates, J. F. (2003). Decision management: How to assure better decisions in your company. San Francisco: John Wiley & Sons.
  • Yuan, B., & Li, J. (2019). The policy effect of the General Data Protection Regulation (GDPR) on the digital public health sector in the European Union: an empirical investigation. International journal of environmental research and public health, 16(6), 1070.
  • Zandi, D., Reis, A., Vayena, E., & Goodman, K. (2019). New ethical challenges of digital technologies, machine learning and artificial intelligence in public health: a call for papers. Bulletin of the World Health Organization, 97(1), 2-2.
There are 84 citations in total.

Details

Primary Language Turkish
Subjects Information Systems Organisation and Management, Business Process Management, Decision Support and Group Support Systems
Journal Section Review Articles
Authors

Muhammet Damar 0000-0002-3985-3073

Early Pub Date December 20, 2024
Publication Date
Submission Date November 25, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Damar, M. (2024). Sağlık Sektöründe Karar Destek Araçları: İş Zekâsı, Makine Öğrenmesi, Derin Öğrenme ve Yapay Zeka Uygulamaları. İzmir Sosyal Bilimler Dergisi, 6(2), 90-115. https://doi.org/10.47899/ijss.1591168
İzmir Journal of Social Sciences © 2019
is indexed and abstracted by
Index Copernicus (Master List), Scilit, CrossRef, Harvard Library, EuroPub, OpenAIRE, Base, Academindex, IAD, Academic Resource Index (Researchbib), ASOS Index, Advanced Science Index, Türk Eğitim İndeksi, Academia.edu, Google Scholar, Scientific Indexing Services (SIS), ROAD, Internet Archive Scholar

Publisher
İzmir Academy Association
www.izmirakademi.org
Journal Home Page | Aim & Scope | Author Guidelines | Policies| Indexes| Journal Boards| Contact