Research Article
BibTex RIS Cite

The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes

Year 2014, , 13 - 17, 01.03.2014
https://doi.org/10.13069/jacodesmath.25090

Abstract

The existence of a quantum [[28, 12, 6]] code was one of the few cases for codes of length n ≤ 30 thatwas left open in the seminal paper by Calderbank, Rains, Shor, and Sloane [2]. The main result ofthis paper is the construction of the first optimal linear quaternary [28, 20, 6] code which contains itsHermitian dual code and yields the first optimal quantum [[28, 12, 6]] code

References

  • W. Bosma, J. Cannon, J, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.
  • A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction via codes over GF (4), IEEE Trans. Information Theory, 44(4), 1369-1387, 1998.
  • A. E. Brouwer, Tables of linear codes, http://www.win.tue.nl/ aeb/.
  • M. Grassl, http://www.codetables.de.
  • F. J. MacWilliams and N. J. A. Sloane,
  • The Theory of Error-Correcting Codes, North-Holland, Amsterdam 1977.
  • G. Nebe, E. M. Rains, N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
  • V. D. Tonchev, Quantum codes from caps, Discrete Math., 308, 6368-6372, 2008.

The existence of optimal quaternary [28,20,6] and quantum [[28,12,6]] codes

Year 2014, , 13 - 17, 01.03.2014
https://doi.org/10.13069/jacodesmath.25090

Abstract

The existence of a quantum $[[28,12,6]]$ code was one of the few cases for codes of length $n\le 30$ that was left open in the seminal paper by Calderbank, Rains, Shor, and Sloane \cite{CRSS}. The main result of this paper is the construction of a new optimal linear quaternary $[28,20,6]$ code which contains its hermitian dual code and yields an optimal linear quantum $[[28,12,6]]$ code.

References

  • W. Bosma, J. Cannon, J, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.
  • A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction via codes over GF (4), IEEE Trans. Information Theory, 44(4), 1369-1387, 1998.
  • A. E. Brouwer, Tables of linear codes, http://www.win.tue.nl/ aeb/.
  • M. Grassl, http://www.codetables.de.
  • F. J. MacWilliams and N. J. A. Sloane,
  • The Theory of Error-Correcting Codes, North-Holland, Amsterdam 1977.
  • G. Nebe, E. M. Rains, N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
  • V. D. Tonchev, Quantum codes from caps, Discrete Math., 308, 6368-6372, 2008.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Vladimir D. Tonchev

Publication Date March 1, 2014
Published in Issue Year 2014

Cite

APA Tonchev, V. D. (2014). The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes. Journal of Algebra Combinatorics Discrete Structures and Applications, 1(1), 13-17. https://doi.org/10.13069/jacodesmath.25090
AMA Tonchev VD. The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes. Journal of Algebra Combinatorics Discrete Structures and Applications. March 2014;1(1):13-17. doi:10.13069/jacodesmath.25090
Chicago Tonchev, Vladimir D. “The Existence of Optimal Quaternary [28, 20, 6] and Quantum [[28, 12, 6]] Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 1, no. 1 (March 2014): 13-17. https://doi.org/10.13069/jacodesmath.25090.
EndNote Tonchev VD (March 1, 2014) The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes. Journal of Algebra Combinatorics Discrete Structures and Applications 1 1 13–17.
IEEE V. D. Tonchev, “The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 1, no. 1, pp. 13–17, 2014, doi: 10.13069/jacodesmath.25090.
ISNAD Tonchev, Vladimir D. “The Existence of Optimal Quaternary [28, 20, 6] and Quantum [[28, 12, 6]] Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 1/1 (March 2014), 13-17. https://doi.org/10.13069/jacodesmath.25090.
JAMA Tonchev VD. The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2014;1:13–17.
MLA Tonchev, Vladimir D. “The Existence of Optimal Quaternary [28, 20, 6] and Quantum [[28, 12, 6]] Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 1, no. 1, 2014, pp. 13-17, doi:10.13069/jacodesmath.25090.
Vancouver Tonchev VD. The existence of optimal quaternary [28, 20, 6] and quantum [[28, 12, 6]] codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2014;1(1):13-7.