A new combinatorial object is introduced, the part-frequency matrix sequence of a partition, which
is elementary to describe and is naturally motivated by Glaisher’s bijection. We prove results that
suggest surprising usefulness for such a simple tool, including the existence of a related statistic that
realizes every possible Ramanujan-type congruence for the partition function. To further exhibit its
research utility, we give an easy generalization of a theorem of Andrews, Dixit and Yee [1] on the mock
theta functions. Throughout, we state a number of observations and questions that can motivate an
array of investigations.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | August 9, 2016 |
Published in Issue | Year 2016 |