BibTex RIS Cite

The part-frequency matrices of a partition

Year 2016, , 177 - 186, 09.08.2016
https://doi.org/10.13069/jacodesmath.41075

Abstract

A new combinatorial object is introduced, the part-frequency matrix sequence of a partition, which
is elementary to describe and is naturally motivated by Glaisher’s bijection. We prove results that
suggest surprising usefulness for such a simple tool, including the existence of a related statistic that
realizes every possible Ramanujan-type congruence for the partition function. To further exhibit its
research utility, we give an easy generalization of a theorem of Andrews, Dixit and Yee [1] on the mock
theta functions. Throughout, we state a number of observations and questions that can motivate an
array of investigations.

References

  • G. E. Andrews, A. Dixit, A. J. Yee, Partitions associated with the Ramanujan/Watson mock theta functions $omega(q)$, $nu(q)$, and $phi(q)$, Res. Number Theory 1 (2015) 1–9.
  • G. Andrews, F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18(2) (1988) 167–171.
  • F. Breuer, D. Eichhorn, B Kronholm, Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts, pre-print available at http://arxiv.org/abs/1508.00397.
  • K. Bringmann, K. Ono, The f(q) mock theta function conjecture and partition ranks, Invent. Math. 165(2) (2006) 243–266.
  • D. Ford, J. McKay, S. P. Norton, More on replicable functions, Comm. Algebra 22(13) (1994) 5175–5193.
  • F. G. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101(1) (1990) 1–17.
  • K. Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci. 102(43) (2005) 15373–15376.
  • S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc. 93(2) (2006) 304–324.
Year 2016, , 177 - 186, 09.08.2016
https://doi.org/10.13069/jacodesmath.41075

Abstract

References

  • G. E. Andrews, A. Dixit, A. J. Yee, Partitions associated with the Ramanujan/Watson mock theta functions $omega(q)$, $nu(q)$, and $phi(q)$, Res. Number Theory 1 (2015) 1–9.
  • G. Andrews, F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18(2) (1988) 167–171.
  • F. Breuer, D. Eichhorn, B Kronholm, Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts, pre-print available at http://arxiv.org/abs/1508.00397.
  • K. Bringmann, K. Ono, The f(q) mock theta function conjecture and partition ranks, Invent. Math. 165(2) (2006) 243–266.
  • D. Ford, J. McKay, S. P. Norton, More on replicable functions, Comm. Algebra 22(13) (1994) 5175–5193.
  • F. G. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101(1) (1990) 1–17.
  • K. Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci. 102(43) (2005) 15373–15376.
  • S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc. 93(2) (2006) 304–324.
There are 8 citations in total.

Details

Journal Section Articles
Authors

William J. Keith This is me

Publication Date August 9, 2016
Published in Issue Year 2016

Cite

APA Keith, W. J. (2016). The part-frequency matrices of a partition. Journal of Algebra Combinatorics Discrete Structures and Applications, 3(3), 177-186. https://doi.org/10.13069/jacodesmath.41075
AMA Keith WJ. The part-frequency matrices of a partition. Journal of Algebra Combinatorics Discrete Structures and Applications. August 2016;3(3):177-186. doi:10.13069/jacodesmath.41075
Chicago Keith, William J. “The Part-Frequency Matrices of a Partition”. Journal of Algebra Combinatorics Discrete Structures and Applications 3, no. 3 (August 2016): 177-86. https://doi.org/10.13069/jacodesmath.41075.
EndNote Keith WJ (August 1, 2016) The part-frequency matrices of a partition. Journal of Algebra Combinatorics Discrete Structures and Applications 3 3 177–186.
IEEE W. J. Keith, “The part-frequency matrices of a partition”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 3, no. 3, pp. 177–186, 2016, doi: 10.13069/jacodesmath.41075.
ISNAD Keith, William J. “The Part-Frequency Matrices of a Partition”. Journal of Algebra Combinatorics Discrete Structures and Applications 3/3 (August 2016), 177-186. https://doi.org/10.13069/jacodesmath.41075.
JAMA Keith WJ. The part-frequency matrices of a partition. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3:177–186.
MLA Keith, William J. “The Part-Frequency Matrices of a Partition”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 3, no. 3, 2016, pp. 177-86, doi:10.13069/jacodesmath.41075.
Vancouver Keith WJ. The part-frequency matrices of a partition. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3(3):177-86.