BibTex RIS Cite

Weak isometries of Hamming spaces

Year 2016, , 209 - 216, 09.08.2016
https://doi.org/10.13069/jacodesmath.67265

Abstract

Consider any permutation of the elements of a (finite) metric space that preserves a specific distance
p. When is such a permutation automatically an isometry of the metric space? In this note we study
this problem for the Hamming spaces H(n,q) both from a linear algebraic and combinatorial point
of view. We obtain some sufficient conditions for the question to have an affirmative answer, as well
as pose some interesting open problems.

References

  • P. Abramenko, H. Van Maldeghem, Maps between buildings that preserve a given Weyl distance, Indag. Math. 15(3) (2004) 305–319.
  • F. S. Beckman, D. A. Jr. Quarles, On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4 (1953) 810–815.
  • A. Brouwer, A. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
  • A. E. Brouwer, M. A. Fiol, Distance-regular graphs where the distance d-graph has fewer distinct eigenvalues, Linear Algebra Appl. 480 (2015) 115–126.
  • S. De Winter, M. Korb, Weak isometries of the Boolean cube, Discrete Math. 339(2) (2016) 877–885.
  • E. Govaert, H. Van Maldeghem, Distance-preserving maps in generalized polygons. I. Maps on flags, Beitrage Algebra. Geom. 43(1) (2002) 89–110.
  • E. Govaert, H. Van Maldeghem, Distance-preserving maps in generalized polygons. II. Maps on points and/or lines, Beitrage Algebra Geom. 43(2) (2002) 303–324.
  • V. Yu. Krasin, On the weak isometries of the Boolean cube, Diskretn. Anal. Issled. Oper. Ser. 1 13(4) (2006) 26–32; translation in J. Appl. Ind. Math. 1(4) (2007) 463–467.
Year 2016, , 209 - 216, 09.08.2016
https://doi.org/10.13069/jacodesmath.67265

Abstract

References

  • P. Abramenko, H. Van Maldeghem, Maps between buildings that preserve a given Weyl distance, Indag. Math. 15(3) (2004) 305–319.
  • F. S. Beckman, D. A. Jr. Quarles, On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4 (1953) 810–815.
  • A. Brouwer, A. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
  • A. E. Brouwer, M. A. Fiol, Distance-regular graphs where the distance d-graph has fewer distinct eigenvalues, Linear Algebra Appl. 480 (2015) 115–126.
  • S. De Winter, M. Korb, Weak isometries of the Boolean cube, Discrete Math. 339(2) (2016) 877–885.
  • E. Govaert, H. Van Maldeghem, Distance-preserving maps in generalized polygons. I. Maps on flags, Beitrage Algebra. Geom. 43(1) (2002) 89–110.
  • E. Govaert, H. Van Maldeghem, Distance-preserving maps in generalized polygons. II. Maps on points and/or lines, Beitrage Algebra Geom. 43(2) (2002) 303–324.
  • V. Yu. Krasin, On the weak isometries of the Boolean cube, Diskretn. Anal. Issled. Oper. Ser. 1 13(4) (2006) 26–32; translation in J. Appl. Ind. Math. 1(4) (2007) 463–467.
There are 8 citations in total.

Details

Journal Section Articles
Authors

Ryan Bruner This is me

Stefaan De Winter This is me

Publication Date August 9, 2016
Published in Issue Year 2016

Cite

APA Bruner, R., & De Winter, S. (2016). Weak isometries of Hamming spaces. Journal of Algebra Combinatorics Discrete Structures and Applications, 3(3), 209-216. https://doi.org/10.13069/jacodesmath.67265
AMA Bruner R, De Winter S. Weak isometries of Hamming spaces. Journal of Algebra Combinatorics Discrete Structures and Applications. August 2016;3(3):209-216. doi:10.13069/jacodesmath.67265
Chicago Bruner, Ryan, and Stefaan De Winter. “Weak Isometries of Hamming Spaces”. Journal of Algebra Combinatorics Discrete Structures and Applications 3, no. 3 (August 2016): 209-16. https://doi.org/10.13069/jacodesmath.67265.
EndNote Bruner R, De Winter S (August 1, 2016) Weak isometries of Hamming spaces. Journal of Algebra Combinatorics Discrete Structures and Applications 3 3 209–216.
IEEE R. Bruner and S. De Winter, “Weak isometries of Hamming spaces”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 3, no. 3, pp. 209–216, 2016, doi: 10.13069/jacodesmath.67265.
ISNAD Bruner, Ryan - De Winter, Stefaan. “Weak Isometries of Hamming Spaces”. Journal of Algebra Combinatorics Discrete Structures and Applications 3/3 (August 2016), 209-216. https://doi.org/10.13069/jacodesmath.67265.
JAMA Bruner R, De Winter S. Weak isometries of Hamming spaces. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3:209–216.
MLA Bruner, Ryan and Stefaan De Winter. “Weak Isometries of Hamming Spaces”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 3, no. 3, 2016, pp. 209-16, doi:10.13069/jacodesmath.67265.
Vancouver Bruner R, De Winter S. Weak isometries of Hamming spaces. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3(3):209-16.