Research Article
BibTex RIS Cite

Some new ternary linear codes

Year 2017, , 227 - 234, 15.09.2017
https://doi.org/10.13069/jacodesmath.327360

Abstract

Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q)$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

References

  • [1] N. Aydin, I. Siap, D. Ray-Chaudhuri, The structure of 1–generator quasi–twisted codes and new linear codes, Des. Codes Cryptogr. 24(3) (2001) 313–326.
  • [2] A. E. Brouwer, Bounds on the Size of Linear Codes, in Handbook of Coding Theory, V.S. PLess, W.C. Huffman, R.A. Brualdi(eds), Elsevier Amsterdam, 1998.
  • [3] E. Z. Chen, Database of quasi–twisted codes, available at http://www.tec.hkr.se/~chen/ research/ codes/searchqc2.htm
  • [4] E. Z. Chen, A new iterative computer search algorithm for good quasi–twisted codes, Des. Codes Cryptogr. 76(2) (2015) 307–323.
  • [5] E. Chen, N. Aydin, A database of linear codes over $F_{13}$ with minimum distance bounds and new quasi–twisted codes from a heuristic search algorithm, J. Algebra Comb. Discrete Appl. 2(1) (2015) 1–16.
  • [6] E. Chen, N. Aydin, New quasi–twisted codes over $F_{11}$-minimum distance bounds and a new database, J. Inf. Optim. Sci. 36(1–2) (2015) 129–157.
  • [7] R. N. Daskalov, T. A. Gulliver, New good quasi–cyclic ternary and quaternary linear codes, IEEE Trans. Inform. Theory 43(5) (1997) 1647–1650.
  • [8] R. Daskalov, P. Hristov, New one–generator quasi–cyclic codes over GF(7), Problemi Peredachi Informatsii 38(1) (2002) 59–63. English translation: Probl. Inf. Transm. 38(1) (2002) 50–54.
  • [9] R. Daskalov, P. Hristov, New quasi–twisted degenerate ternary linear codes, IEEE Trans. Inform. Theory 49(9) (2003) 2259–2263.
  • [10] R. Daskalov, P. Hristov, E. Metodieva, New minimum distance bounds for linear codes over GF(5), Discrete Math. 275(1–3) (2004) 97–110.
  • [11] M. Grassl, Linear code bound [electronic table; online], available at http://www.codetables.de.
  • [12] P. P. Greenough, R. Hill, Optimal ternary quasi–cyclic codes, Des. Codes Cryptogr. 2(1) (1992) 81–91.
  • [13] T. A. Gulliver, P. R. J. Ostergard, Improved bounds for ternary linear codes of dimension 7, IEEE Trans. Inform. Theory 43(4) (1997) 1377–1381.
  • [14] I. Siap, N. Aydin, D. Ray-Chaudhury, New ternary quasi–cyclic codes with better minimum distances, IEEE Trans. Inform. Theory 46(4) (2000) 1554–1558.
  • [15] A. Vardy, The intractability of computing the minimum distance of a code, IEEE Trans. Inform. Theory 43(6) (1997) 1757–1766.
Year 2017, , 227 - 234, 15.09.2017
https://doi.org/10.13069/jacodesmath.327360

Abstract

References

  • [1] N. Aydin, I. Siap, D. Ray-Chaudhuri, The structure of 1–generator quasi–twisted codes and new linear codes, Des. Codes Cryptogr. 24(3) (2001) 313–326.
  • [2] A. E. Brouwer, Bounds on the Size of Linear Codes, in Handbook of Coding Theory, V.S. PLess, W.C. Huffman, R.A. Brualdi(eds), Elsevier Amsterdam, 1998.
  • [3] E. Z. Chen, Database of quasi–twisted codes, available at http://www.tec.hkr.se/~chen/ research/ codes/searchqc2.htm
  • [4] E. Z. Chen, A new iterative computer search algorithm for good quasi–twisted codes, Des. Codes Cryptogr. 76(2) (2015) 307–323.
  • [5] E. Chen, N. Aydin, A database of linear codes over $F_{13}$ with minimum distance bounds and new quasi–twisted codes from a heuristic search algorithm, J. Algebra Comb. Discrete Appl. 2(1) (2015) 1–16.
  • [6] E. Chen, N. Aydin, New quasi–twisted codes over $F_{11}$-minimum distance bounds and a new database, J. Inf. Optim. Sci. 36(1–2) (2015) 129–157.
  • [7] R. N. Daskalov, T. A. Gulliver, New good quasi–cyclic ternary and quaternary linear codes, IEEE Trans. Inform. Theory 43(5) (1997) 1647–1650.
  • [8] R. Daskalov, P. Hristov, New one–generator quasi–cyclic codes over GF(7), Problemi Peredachi Informatsii 38(1) (2002) 59–63. English translation: Probl. Inf. Transm. 38(1) (2002) 50–54.
  • [9] R. Daskalov, P. Hristov, New quasi–twisted degenerate ternary linear codes, IEEE Trans. Inform. Theory 49(9) (2003) 2259–2263.
  • [10] R. Daskalov, P. Hristov, E. Metodieva, New minimum distance bounds for linear codes over GF(5), Discrete Math. 275(1–3) (2004) 97–110.
  • [11] M. Grassl, Linear code bound [electronic table; online], available at http://www.codetables.de.
  • [12] P. P. Greenough, R. Hill, Optimal ternary quasi–cyclic codes, Des. Codes Cryptogr. 2(1) (1992) 81–91.
  • [13] T. A. Gulliver, P. R. J. Ostergard, Improved bounds for ternary linear codes of dimension 7, IEEE Trans. Inform. Theory 43(4) (1997) 1377–1381.
  • [14] I. Siap, N. Aydin, D. Ray-Chaudhury, New ternary quasi–cyclic codes with better minimum distances, IEEE Trans. Inform. Theory 46(4) (2000) 1554–1558.
  • [15] A. Vardy, The intractability of computing the minimum distance of a code, IEEE Trans. Inform. Theory 43(6) (1997) 1757–1766.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Rumen Daskalov This is me 0000-0001-7441-4757

Plamen Hristov This is me 0000-0002-7350-4061

Publication Date September 15, 2017
Published in Issue Year 2017

Cite

APA Daskalov, R., & Hristov, P. (2017). Some new ternary linear codes. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(3), 227-234. https://doi.org/10.13069/jacodesmath.327360
AMA Daskalov R, Hristov P. Some new ternary linear codes. Journal of Algebra Combinatorics Discrete Structures and Applications. September 2017;4(3):227-234. doi:10.13069/jacodesmath.327360
Chicago Daskalov, Rumen, and Plamen Hristov. “Some New Ternary Linear Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, no. 3 (September 2017): 227-34. https://doi.org/10.13069/jacodesmath.327360.
EndNote Daskalov R, Hristov P (September 1, 2017) Some new ternary linear codes. Journal of Algebra Combinatorics Discrete Structures and Applications 4 3 227–234.
IEEE R. Daskalov and P. Hristov, “Some new ternary linear codes”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 3, pp. 227–234, 2017, doi: 10.13069/jacodesmath.327360.
ISNAD Daskalov, Rumen - Hristov, Plamen. “Some New Ternary Linear Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/3 (September 2017), 227-234. https://doi.org/10.13069/jacodesmath.327360.
JAMA Daskalov R, Hristov P. Some new ternary linear codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:227–234.
MLA Daskalov, Rumen and Plamen Hristov. “Some New Ternary Linear Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 3, 2017, pp. 227-34, doi:10.13069/jacodesmath.327360.
Vancouver Daskalov R, Hristov P. Some new ternary linear codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(3):227-34.