Research Article
BibTex RIS Cite
Year 2018, , 45 - 49, 15.01.2018
https://doi.org/10.13069/jacodesmath.369864

Abstract

References

  • [1] J. Chifman, Note on direct products of certain classes of finite groups, Commun. Algebra 37(5) (2009) 1831–1842.
  • [2] R. Dedekind, Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann. 48(4) (1897) 548–561.
  • [3] S. Dougherty, J.-L. Kim, P. Solé, Open problems in coding theory, Contemp. Math. 634 (2015) 79–99.
  • [4] K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4 (1941) 171–199.
  • [5] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
  • [6] M. Suzuki, On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc. 70(2) (1951) 345–371.
  • [7] G. Zacher, Caratterizzazione dei gruppi immagini omomorfe duali di un gruppo finito, Rend. Sem. Mat. Univ. Padova 31 (1961) 412–422.

No MacWilliams duality for codes over nonabelian groups

Year 2018, , 45 - 49, 15.01.2018
https://doi.org/10.13069/jacodesmath.369864

Abstract

Dougherty, Kim, and Sol\'e [3] have asked whether there is a duality theory and a MacWilliams formula for codes over nonabelian groups, or more generally, whether there is any subclass of nonabelian groups which have such a duality theory. We answer this in the negative by showing that there does not exist a nonabelian group $G$ with a duality theory on the subgroups of $G^n$ for all $n$.

References

  • [1] J. Chifman, Note on direct products of certain classes of finite groups, Commun. Algebra 37(5) (2009) 1831–1842.
  • [2] R. Dedekind, Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann. 48(4) (1897) 548–561.
  • [3] S. Dougherty, J.-L. Kim, P. Solé, Open problems in coding theory, Contemp. Math. 634 (2015) 79–99.
  • [4] K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4 (1941) 171–199.
  • [5] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
  • [6] M. Suzuki, On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc. 70(2) (1951) 345–371.
  • [7] G. Zacher, Caratterizzazione dei gruppi immagini omomorfe duali di un gruppo finito, Rend. Sem. Mat. Univ. Padova 31 (1961) 412–422.
There are 7 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

M. Ryan Julian Jr. This is me 0000-0002-6117-1415

Publication Date January 15, 2018
Published in Issue Year 2018

Cite

APA Julian Jr., M. R. (2018). No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(1), 45-49. https://doi.org/10.13069/jacodesmath.369864
AMA Julian Jr. MR. No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications. January 2018;5(1):45-49. doi:10.13069/jacodesmath.369864
Chicago Julian Jr., M. Ryan. “No MacWilliams Duality for Codes over Nonabelian Groups”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, no. 1 (January 2018): 45-49. https://doi.org/10.13069/jacodesmath.369864.
EndNote Julian Jr. MR (January 1, 2018) No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications 5 1 45–49.
IEEE M. R. Julian Jr., “No MacWilliams duality for codes over nonabelian groups”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 1, pp. 45–49, 2018, doi: 10.13069/jacodesmath.369864.
ISNAD Julian Jr., M. Ryan. “No MacWilliams Duality for Codes over Nonabelian Groups”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/1 (January 2018), 45-49. https://doi.org/10.13069/jacodesmath.369864.
JAMA Julian Jr. MR. No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:45–49.
MLA Julian Jr., M. Ryan. “No MacWilliams Duality for Codes over Nonabelian Groups”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 1, 2018, pp. 45-49, doi:10.13069/jacodesmath.369864.
Vancouver Julian Jr. MR. No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(1):45-9.