[1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2,
Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976.
[2] G. E. Andrews, A. Knopfmacher, P. Paule, H. Prodinger, q–Engel series expansions and Slater’s
identities, Quaest. Math. 24(3) (2001) 403–416.
[3] G. E. Andrews, A. Knopfmacher, P. Paule, An infinite family of Engel expansions of Rogers–
Ramanujan type, Adv. Appl. Math. 25(1) (2000) 2–11.
[4] G. E. Andrews, J. P. O. Santos, Rogers–Ramanujan type identities for partitions with attached odd
parts, Ramanujan J. 1(1) (1997) 91–99.
[5] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer–Verlag, New York, 1991.
[6] B. C. Berndt, S. S. Huang, J. Sohn, S. H. Son, Some theorems on the Rogers–Ramanujan continued
fraction in Ramanujan’s lost notebook, Trans. Amer. Math. Soc. 352 (2000) 2157–2177.
[7] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc. 89(2)
(1981) 211–223.
[8] R. Chapman, A new proof of some identities of Bressoud, Int. J. Math. Math. Sci. 32(10) (2002)
627–633.
[9] N. S. S. Gu, H. Prodinger, On some continued fraction expansions of the Rogers–Ramanujan type,
Ramanujan J. 26(3) (2011) 323–367.
[10] A. V. Sills, Finite Rogers–Ramanujan type identities, Electron. J. Combin. 10 (2003) Research Paper
13, 122 pp.
[11] L. J. Slater, Further identities of the Rogers–Ramanujan type, Proc. London Math. Soc. s2–54(1)
(1952) 147–167.
[1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2,
Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976.
[2] G. E. Andrews, A. Knopfmacher, P. Paule, H. Prodinger, q–Engel series expansions and Slater’s
identities, Quaest. Math. 24(3) (2001) 403–416.
[3] G. E. Andrews, A. Knopfmacher, P. Paule, An infinite family of Engel expansions of Rogers–
Ramanujan type, Adv. Appl. Math. 25(1) (2000) 2–11.
[4] G. E. Andrews, J. P. O. Santos, Rogers–Ramanujan type identities for partitions with attached odd
parts, Ramanujan J. 1(1) (1997) 91–99.
[5] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer–Verlag, New York, 1991.
[6] B. C. Berndt, S. S. Huang, J. Sohn, S. H. Son, Some theorems on the Rogers–Ramanujan continued
fraction in Ramanujan’s lost notebook, Trans. Amer. Math. Soc. 352 (2000) 2157–2177.
[7] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc. 89(2)
(1981) 211–223.
[8] R. Chapman, A new proof of some identities of Bressoud, Int. J. Math. Math. Sci. 32(10) (2002)
627–633.
[9] N. S. S. Gu, H. Prodinger, On some continued fraction expansions of the Rogers–Ramanujan type,
Ramanujan J. 26(3) (2011) 323–367.
[10] A. V. Sills, Finite Rogers–Ramanujan type identities, Electron. J. Combin. 10 (2003) Research Paper
13, 122 pp.
[11] L. J. Slater, Further identities of the Rogers–Ramanujan type, Proc. London Math. Soc. s2–54(1)
(1952) 147–167.
Prodinger, H. (2018). Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(3), 137-142. https://doi.org/10.13069/jacodesmath.451218
AMA
Prodinger H. Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications. October 2018;5(3):137-142. doi:10.13069/jacodesmath.451218
Chicago
Prodinger, Helmut. “Finite Rogers-Ramanujan Type Continued Fractions”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, no. 3 (October 2018): 137-42. https://doi.org/10.13069/jacodesmath.451218.
EndNote
Prodinger H (October 1, 2018) Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications 5 3 137–142.
IEEE
H. Prodinger, “Finite Rogers-Ramanujan type continued fractions”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 3, pp. 137–142, 2018, doi: 10.13069/jacodesmath.451218.
ISNAD
Prodinger, Helmut. “Finite Rogers-Ramanujan Type Continued Fractions”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/3 (October 2018), 137-142. https://doi.org/10.13069/jacodesmath.451218.
JAMA
Prodinger H. Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:137–142.
MLA
Prodinger, Helmut. “Finite Rogers-Ramanujan Type Continued Fractions”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 3, 2018, pp. 137-42, doi:10.13069/jacodesmath.451218.
Vancouver
Prodinger H. Finite Rogers-Ramanujan type continued fractions. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(3):137-42.