Research Article
BibTex RIS Cite
Year 2018, , 143 - 151, 08.10.2018
https://doi.org/10.13069/jacodesmath.458601

Abstract

References

  • [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput. 24(3–4) (1997) 235–265.
  • [2] I. Bouyukliev, "About the code equivalence" in Advances in Coding Theory and Cryptology, NJ, Hackensack: World Scientific, 2007.
  • [3] R. A. Brualdi, V. S. Pless, Weight enumerators of self–dual codes, IEEE Trans. Inform. Theory 37(4) (1991) 1222–1225.
  • [4] N. Chigira, M. Harada, M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42(1) (2007) 93–101.
  • [5] P. Çomak, J. L. Kim, F. Özbudak, New cubic self–dual codes of length 54; 60 and 66, Appl. Algebra Engrg. Comm. Comput. 29(4) (2018) 303–312.
  • [6] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self–dual codes, IEEE Trans. Inform. Theory 36(6) (1990) 1319–1333.
  • [7] S. T. Dougherty, T. A. Gulliver, M. Harada, Extremal binary self–dual codes, IEEE Trans. Inform. Theory 43(6) (1997) 2036–2047.
  • [8] M. Harada, T. Nishimura, R. Yorgova, New extremal self–dual codes of length 66, Math. Balkanica (N.S.) 21(1–2) (2007) 113–121.
  • [9] S. Karadeniz, B. Yildiz, New extremal binary self–dual codes of length 66 as extensions of self–dual codes over $R_k$, J. Franklin Inst. 350(8) (2013) 1963–1973.
  • [10] A. Kaya, New extremal binary self–dual codes of lengths 64 and 66 from $R_2$–lifts, Finite Fields Appl. 46 (2017) 271–279.
  • [11] A. Kaya, B. Yildiz, A. Pasa, New extremal binary self–dual codes from a modified four circulant construction, Discrete Math. 339(3) (2016) 1086–1094.
  • [12] A. Kaya, B. Yildiz, I. Siap, New extremal binary self–dual codes from F4 + uF4–lifts of quadratic circulant codes over F4, Finite Fields Appl. 35 (2015) 318–329.
  • [13] E. M. Rains, Shadow bounds for self–dual codes, IEEE Trans. Inform. Theory 44(1) (1998) 134–139.
  • [14] H.-P. Tsai, Existence of certain extremal self–dual codes, IEEE Trans. Inform. Theory 38(2) (1992) 501–504.
  • [15] H.-P. Tsai, Extremal self–dual codes of lengths 66 and 68, IEEE Trans. Inform. Theory 45(6) (1999) 2129–2133.
  • [16] N. Yankov, Self–dual [62; 31; 12] and [64; 32; 12] codes with an automorphism of order 7, Adv. Math. Commun. 8(1) (2014) 73–81.
  • [17] N. Yankov, M. H. Lee, M. Gürel, M. Ivanova, Self–dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory 61(3) (2015) 1188–1193.
  • [18] N. Yankov, M. Ivanova, M. H. Lee, Self–dual codes with an automorphism of order 7 and s–extremal codes of length 68, Finite Fields Appl. 51 (2018) 17–30.

New extremal singly even self-dual codes of lengths 64 and 66

Year 2018, , 143 - 151, 08.10.2018
https://doi.org/10.13069/jacodesmath.458601

Abstract

For lengths $64$ and $66$,
we construct six and seven extremal singly even self-dual
codes with weight enumerators for which no extremal
singly even self-dual codes were previously known to exist, respectively.
We also construct new $40$ inequivalent
extremal doubly even self-dual $[64,32,12]$ codes
with covering radius $12$ meeting the Delsarte bound.
These new codes are constructed by considering
four-circulant codes along with their neighbors and shadows.

References

  • [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput. 24(3–4) (1997) 235–265.
  • [2] I. Bouyukliev, "About the code equivalence" in Advances in Coding Theory and Cryptology, NJ, Hackensack: World Scientific, 2007.
  • [3] R. A. Brualdi, V. S. Pless, Weight enumerators of self–dual codes, IEEE Trans. Inform. Theory 37(4) (1991) 1222–1225.
  • [4] N. Chigira, M. Harada, M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42(1) (2007) 93–101.
  • [5] P. Çomak, J. L. Kim, F. Özbudak, New cubic self–dual codes of length 54; 60 and 66, Appl. Algebra Engrg. Comm. Comput. 29(4) (2018) 303–312.
  • [6] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self–dual codes, IEEE Trans. Inform. Theory 36(6) (1990) 1319–1333.
  • [7] S. T. Dougherty, T. A. Gulliver, M. Harada, Extremal binary self–dual codes, IEEE Trans. Inform. Theory 43(6) (1997) 2036–2047.
  • [8] M. Harada, T. Nishimura, R. Yorgova, New extremal self–dual codes of length 66, Math. Balkanica (N.S.) 21(1–2) (2007) 113–121.
  • [9] S. Karadeniz, B. Yildiz, New extremal binary self–dual codes of length 66 as extensions of self–dual codes over $R_k$, J. Franklin Inst. 350(8) (2013) 1963–1973.
  • [10] A. Kaya, New extremal binary self–dual codes of lengths 64 and 66 from $R_2$–lifts, Finite Fields Appl. 46 (2017) 271–279.
  • [11] A. Kaya, B. Yildiz, A. Pasa, New extremal binary self–dual codes from a modified four circulant construction, Discrete Math. 339(3) (2016) 1086–1094.
  • [12] A. Kaya, B. Yildiz, I. Siap, New extremal binary self–dual codes from F4 + uF4–lifts of quadratic circulant codes over F4, Finite Fields Appl. 35 (2015) 318–329.
  • [13] E. M. Rains, Shadow bounds for self–dual codes, IEEE Trans. Inform. Theory 44(1) (1998) 134–139.
  • [14] H.-P. Tsai, Existence of certain extremal self–dual codes, IEEE Trans. Inform. Theory 38(2) (1992) 501–504.
  • [15] H.-P. Tsai, Extremal self–dual codes of lengths 66 and 68, IEEE Trans. Inform. Theory 45(6) (1999) 2129–2133.
  • [16] N. Yankov, Self–dual [62; 31; 12] and [64; 32; 12] codes with an automorphism of order 7, Adv. Math. Commun. 8(1) (2014) 73–81.
  • [17] N. Yankov, M. H. Lee, M. Gürel, M. Ivanova, Self–dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory 61(3) (2015) 1188–1193.
  • [18] N. Yankov, M. Ivanova, M. H. Lee, Self–dual codes with an automorphism of order 7 and s–extremal codes of length 68, Finite Fields Appl. 51 (2018) 17–30.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Damyan Anev This is me 0000-0002-3175-0168

Masaaki Harada This is me 0000-0002-2748-6456

Nikolay Yankov This is me 0000-0003-3703-5867

Publication Date October 8, 2018
Published in Issue Year 2018

Cite

APA Anev, D., Harada, M., & Yankov, N. (2018). New extremal singly even self-dual codes of lengths 64 and 66. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(3), 143-151. https://doi.org/10.13069/jacodesmath.458601
AMA Anev D, Harada M, Yankov N. New extremal singly even self-dual codes of lengths 64 and 66. Journal of Algebra Combinatorics Discrete Structures and Applications. October 2018;5(3):143-151. doi:10.13069/jacodesmath.458601
Chicago Anev, Damyan, Masaaki Harada, and Nikolay Yankov. “New Extremal Singly Even Self-Dual Codes of Lengths 64 and 66”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, no. 3 (October 2018): 143-51. https://doi.org/10.13069/jacodesmath.458601.
EndNote Anev D, Harada M, Yankov N (October 1, 2018) New extremal singly even self-dual codes of lengths 64 and 66. Journal of Algebra Combinatorics Discrete Structures and Applications 5 3 143–151.
IEEE D. Anev, M. Harada, and N. Yankov, “New extremal singly even self-dual codes of lengths 64 and 66”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 3, pp. 143–151, 2018, doi: 10.13069/jacodesmath.458601.
ISNAD Anev, Damyan et al. “New Extremal Singly Even Self-Dual Codes of Lengths 64 and 66”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/3 (October 2018), 143-151. https://doi.org/10.13069/jacodesmath.458601.
JAMA Anev D, Harada M, Yankov N. New extremal singly even self-dual codes of lengths 64 and 66. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:143–151.
MLA Anev, Damyan et al. “New Extremal Singly Even Self-Dual Codes of Lengths 64 and 66”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 3, 2018, pp. 143-51, doi:10.13069/jacodesmath.458601.
Vancouver Anev D, Harada M, Yankov N. New extremal singly even self-dual codes of lengths 64 and 66. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(3):143-51.