Research Article
BibTex RIS Cite

One–generator quasi–abelian codes revisited

Year 2017, Volume: 4 Issue: 1, 49 - 60, 11.01.2017
https://doi.org/10.13069/jacodesmath.09585

Abstract

The class of 1-generator quasi-abelian codes over finite fields is revisited. Alternative and explicit
characterization and enumeration of such codes are given. An algorithm to find all 1-generator
quasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances are
improved from Grassl’s online table are presented.

References

  • [1] S. D. Berman, Semi–simple cyclic and abelian codes. II, Kibernetika 3(3) (1967) 21–30.
  • [2] S. D. Berman, On the theory of group codes, Kibernetika 3(1) (1967) 31–39.
  • [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265.
  • [4] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495.
  • [5] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, Accessed on 2015-10-09.
  • [6] S. Jitman, Generator matrices for new quasi–abelian codes, Online available at https://sites.google.com/site/quasiabeliancodes, Accessed on 2015-10-09.
  • [7] S. Jitman, S. Ling, Quasi–abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511–531.
  • [8] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1–2) (2001) 157–175.
  • [9] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760.
  • [10] S. Ling, P. Solé, Good self–dual quasi–cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053.
  • [11] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700.
  • [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error–Correcting Codes, Amsterdam, The Netherlands: North–Holland, 1977.
  • [13] J. Pei, X. Zhang, 1-generator quasi–cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554–561.
  • [14] G. E. Seguin, A class of 1-generator quasi–cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753.
  • [15] S. K. Wasan, Quasi abelian codes, Pub. Inst. Math. 21(35) (1977) 201–206.
Year 2017, Volume: 4 Issue: 1, 49 - 60, 11.01.2017
https://doi.org/10.13069/jacodesmath.09585

Abstract

References

  • [1] S. D. Berman, Semi–simple cyclic and abelian codes. II, Kibernetika 3(3) (1967) 21–30.
  • [2] S. D. Berman, On the theory of group codes, Kibernetika 3(1) (1967) 31–39.
  • [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265.
  • [4] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495.
  • [5] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, Accessed on 2015-10-09.
  • [6] S. Jitman, Generator matrices for new quasi–abelian codes, Online available at https://sites.google.com/site/quasiabeliancodes, Accessed on 2015-10-09.
  • [7] S. Jitman, S. Ling, Quasi–abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511–531.
  • [8] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1–2) (2001) 157–175.
  • [9] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760.
  • [10] S. Ling, P. Solé, Good self–dual quasi–cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053.
  • [11] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700.
  • [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error–Correcting Codes, Amsterdam, The Netherlands: North–Holland, 1977.
  • [13] J. Pei, X. Zhang, 1-generator quasi–cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554–561.
  • [14] G. E. Seguin, A class of 1-generator quasi–cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753.
  • [15] S. K. Wasan, Quasi abelian codes, Pub. Inst. Math. 21(35) (1977) 201–206.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Somphong Jitman

Patanee Udomkavanich This is me

Publication Date January 11, 2017
Published in Issue Year 2017 Volume: 4 Issue: 1

Cite

APA Jitman, S., & Udomkavanich, P. (2017). One–generator quasi–abelian codes revisited. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(1), 49-60. https://doi.org/10.13069/jacodesmath.09585
AMA Jitman S, Udomkavanich P. One–generator quasi–abelian codes revisited. Journal of Algebra Combinatorics Discrete Structures and Applications. January 2017;4(1):49-60. doi:10.13069/jacodesmath.09585
Chicago Jitman, Somphong, and Patanee Udomkavanich. “One–generator quasi–abelian Codes Revisited”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, no. 1 (January 2017): 49-60. https://doi.org/10.13069/jacodesmath.09585.
EndNote Jitman S, Udomkavanich P (January 1, 2017) One–generator quasi–abelian codes revisited. Journal of Algebra Combinatorics Discrete Structures and Applications 4 1 49–60.
IEEE S. Jitman and P. Udomkavanich, “One–generator quasi–abelian codes revisited”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 1, pp. 49–60, 2017, doi: 10.13069/jacodesmath.09585.
ISNAD Jitman, Somphong - Udomkavanich, Patanee. “One–generator quasi–abelian Codes Revisited”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/1 (January 2017), 49-60. https://doi.org/10.13069/jacodesmath.09585.
JAMA Jitman S, Udomkavanich P. One–generator quasi–abelian codes revisited. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:49–60.
MLA Jitman, Somphong and Patanee Udomkavanich. “One–generator quasi–abelian Codes Revisited”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 1, 2017, pp. 49-60, doi:10.13069/jacodesmath.09585.
Vancouver Jitman S, Udomkavanich P. One–generator quasi–abelian codes revisited. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(1):49-60.