Research Article
BibTex RIS Cite

The nonnegative Q−matrix completion problem

Year 2017, Volume: 4 Issue: 1, 61 - 74, 11.01.2017
https://doi.org/10.13069/jacodesmath.05630

Abstract

In this paper, the nonnegative $Q$-matrix completion problem is studied. A real $n\times n$ matrix is a $Q$-matrix if for $k\in \{1,\ldots, n\}$, the sum of all $k \times k$ principal minors is positive. A digraph $D$ is said to have nonnegative $Q$-completion if every partial nonnegative $Q$-matrix specifying $D$ can be completed to a nonnegative $Q$-matrix. For nonnegative $Q$-completion problem, necessary conditions and sufficient conditions for a digraph to have nonnegative $Q$-completion are obtained. Further, the digraphs of order at most four that have nonnegative $Q$-completion have been studied.

References

  • [1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman & Hall/CRC, London, 2005.
  • [2] J. Y. Choi, L. M. DeAlba, L. Hogben, B. Kivunge, S. Nordstrom, M. Shedenhelm, The nonnegative P_0−matrix completion problem, Electron. J. Linear Algebra 10 (2003) 46–59.
  • [3] J. Y. Choi, L. M. DeAlba, L. Hogben, M. S. Maxwell, A. Wangsness, The P_0−matrix completion problem, Electron. J. Linear Algebra 9 (2002) 1–20.
  • [4] L. M. Dealba, L. Hogben, B. K. Sarma, The Q−matrix completion problem, Electron. J. Linear Algebra 18 (2009) 176–191.
  • [5] S. M. Fallat, C. R. Johnson, J. R. Torregrosa, A. M. Urbano, P−matrix completions under weak symmetry assumptions, Linear Algebra Appl. 312(1–3) (2000) 73–91.
  • [6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
  • [7] L. Hogben, Graph theoretic methods for matrix completion problems, Linear Algebra Appl. 328(1–3) (2001) 161–202.
  • [8] L. Hogben, Matrix completion problems for pairs of related classes of matrices, Linear Algebra Appl. 373 (2003) 13–29.
  • [9] L. Hogben, A. Wangsness, Matrix completion problems, in Handbook of Linear Algebra, L. Hogben, Editor, Chapman and Hall/CRC Press, Boca Raton, 2007.
  • [10] C. R. Johnson, B. K. Kroschel,The combinatorially symmetric P−matrix completion problem, Electron. J. Linear Algebra 1 (1996) 59–63.
  • [11] C. Jordon, J. R. Torregrosa, A. M. Urbano, Completions of partial P−matrices with acyclic or non–acyclic associated graph, Linear Algebra Appl. 368 (2003) 25–51.
Year 2017, Volume: 4 Issue: 1, 61 - 74, 11.01.2017
https://doi.org/10.13069/jacodesmath.05630

Abstract

References

  • [1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman & Hall/CRC, London, 2005.
  • [2] J. Y. Choi, L. M. DeAlba, L. Hogben, B. Kivunge, S. Nordstrom, M. Shedenhelm, The nonnegative P_0−matrix completion problem, Electron. J. Linear Algebra 10 (2003) 46–59.
  • [3] J. Y. Choi, L. M. DeAlba, L. Hogben, M. S. Maxwell, A. Wangsness, The P_0−matrix completion problem, Electron. J. Linear Algebra 9 (2002) 1–20.
  • [4] L. M. Dealba, L. Hogben, B. K. Sarma, The Q−matrix completion problem, Electron. J. Linear Algebra 18 (2009) 176–191.
  • [5] S. M. Fallat, C. R. Johnson, J. R. Torregrosa, A. M. Urbano, P−matrix completions under weak symmetry assumptions, Linear Algebra Appl. 312(1–3) (2000) 73–91.
  • [6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
  • [7] L. Hogben, Graph theoretic methods for matrix completion problems, Linear Algebra Appl. 328(1–3) (2001) 161–202.
  • [8] L. Hogben, Matrix completion problems for pairs of related classes of matrices, Linear Algebra Appl. 373 (2003) 13–29.
  • [9] L. Hogben, A. Wangsness, Matrix completion problems, in Handbook of Linear Algebra, L. Hogben, Editor, Chapman and Hall/CRC Press, Boca Raton, 2007.
  • [10] C. R. Johnson, B. K. Kroschel,The combinatorially symmetric P−matrix completion problem, Electron. J. Linear Algebra 1 (1996) 59–63.
  • [11] C. Jordon, J. R. Torregrosa, A. M. Urbano, Completions of partial P−matrices with acyclic or non–acyclic associated graph, Linear Algebra Appl. 368 (2003) 25–51.
There are 11 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Bhaba Kumar Sarma This is me

Kalyan Sinha

Publication Date January 11, 2017
Published in Issue Year 2017 Volume: 4 Issue: 1

Cite

APA Sarma, B. K., & Sinha, K. (2017). The nonnegative Q−matrix completion problem. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(1), 61-74. https://doi.org/10.13069/jacodesmath.05630
AMA Sarma BK, Sinha K. The nonnegative Q−matrix completion problem. Journal of Algebra Combinatorics Discrete Structures and Applications. January 2017;4(1):61-74. doi:10.13069/jacodesmath.05630
Chicago Sarma, Bhaba Kumar, and Kalyan Sinha. “The Nonnegative Q−matrix Completion Problem”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, no. 1 (January 2017): 61-74. https://doi.org/10.13069/jacodesmath.05630.
EndNote Sarma BK, Sinha K (January 1, 2017) The nonnegative Q−matrix completion problem. Journal of Algebra Combinatorics Discrete Structures and Applications 4 1 61–74.
IEEE B. K. Sarma and K. Sinha, “The nonnegative Q−matrix completion problem”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 1, pp. 61–74, 2017, doi: 10.13069/jacodesmath.05630.
ISNAD Sarma, Bhaba Kumar - Sinha, Kalyan. “The Nonnegative Q−matrix Completion Problem”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/1 (January 2017), 61-74. https://doi.org/10.13069/jacodesmath.05630.
JAMA Sarma BK, Sinha K. The nonnegative Q−matrix completion problem. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:61–74.
MLA Sarma, Bhaba Kumar and Kalyan Sinha. “The Nonnegative Q−matrix Completion Problem”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 1, 2017, pp. 61-74, doi:10.13069/jacodesmath.05630.
Vancouver Sarma BK, Sinha K. The nonnegative Q−matrix completion problem. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(1):61-74.