The equation (4) on the page 178 of the paper previously published has to be corrected. We had only handled the case of the Farey vertices for which
$\min\left(\left\lfloor\dfrac{2m}{sr'}\right\rfloor,\left\lfloor\dfrac{n}{s'r}\right\rfloor \right)\in\mathbb{N}^{*}$.
In fact we had to distinguish two cases: $\min\left(\left\lfloor\dfrac{2m}{sr'}\right\rfloor,\left\lfloor\dfrac{n}{s'r}\right\rfloor \right)\in\mathbb{N}^{*}$ and $\min\left(\left\lfloor\dfrac{2m}{sr'}\right\rfloor,\left\lfloor\dfrac{n}{s'r}\right\rfloor \right)=0$.
However, we highlight the correct results of the original paper and its applications.
We underline that in this work, we still brought several contributions. These contributions are: applying the fundamental formulas of Graph Theory to the Farey diagram of order $(m,n)$, finding a good upper bound for the degree of a Farey vertex and the relations between the Farey diagrams and the linear diophantine equations.
Combinatorial number theory Farey diagrams Theoretical computer sciences Discrete planes Diophantine equations Arithmetical geometry Combinatorial geometry Discrete geometry Graph theory in computer sciences
Subjects | Engineering |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | May 15, 2016 |
Published in Issue | Year 2016 Volume: 3 Issue: 2 |