Research Article
BibTex RIS Cite

Fibonacci numbers and resolutions of domino ideals

Year 2019, Volume: 6 Issue: 2, 63 - 74, 07.05.2019
https://doi.org/10.13069/jacodesmath.561316

Abstract

This paper considers a class of monomial ideals, called domino ideals, whose generating sets correspond to the sets of domino tilings of a $2\times n$ tableau. The multi-graded Betti numbers are shown to be in one-to-one correspondence with equivalence classes of sets of tilings. It is well-known that the number of domino tilings of a $2\times n$ tableau is given by a Fibonacci number. Using the bijection, this relationship is further expanded to show the relationship between the Fibonacci numbers and the graded Betti numbers of the corresponding domino ideal.

References

  • [1] A. Alilooee, S. Faridi, On the resolution of path ideals of cycles, Comm. Algebra 43(12) (2015) 5413–5433.
  • [2] F. Ardila, R. P. Stanley, Tilings, Math. Intelligencer 32(4) (2010) 32–43.
  • [3] P. K. Benedetto, A. N. Loehr, Domino tiling graphs, Ars Combin. 109 (2013), 3–29.
  • [4] R. R. Bouchat, H. T. Hà, A. O’Keefe, Path ideals of rooted trees and their graded Betti numbers, J. Combin. Theory Ser. A 118(8) (2011) 2411–2425.
  • [5] R. R. Bouchat, T. M. Brown, Multi-graded Betti numbers of path ideals of trees, J. Algebra Appl. 16(1) (2017) 1750018.
  • [6] R. R. Bouchat, T. M. Brown, Minimal free resolutions of $2\times n$ domino tilings, J. Algebra Appl. online ready.
  • [7] S. Butler, P. Horn, E. Tressler, Intersection domino tilings, Fibonacci Quart. 48(2) (2010) 114–120.
  • [8] A. Conca, E. De Negri, M-sequences, graph ideals, and ladder ideals of linear type, J. Algebra 211(2) (1999) 599–624.
  • [9] N. Erey, S. Faridi, Multigraded Betti numbers of simplicial forests J. Pure Appl. Algebra 218(10) (2014) 1800–1805.
  • [10] S. Faridi, The facet ideal of a simplicial complex, Manuscripta Math. 109(2) (2002) 159–174.
  • [11] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at https://faculty.math.illinois.edu/Macaulay2/.
  • [12] H. T. Hà, A. Van Tuyl, Monomial ideals, edge ideals of hyper graphs, and their graded Betti numbers, J. Algebr. Comb. 27(2) (2008) 215–245.
  • [13] P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, Physica 27(12) (1961) 1209–1225.
  • [14] E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Springer-Verlag, New York, 2005.
  • [15] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, (2018).
  • [16] H. N. V. Temperley, M. E. Fisher, Dimer problem in statistical mechanics-an exact result, Philosophical Magazine, 6(68) (1961) 1061–1063.
Year 2019, Volume: 6 Issue: 2, 63 - 74, 07.05.2019
https://doi.org/10.13069/jacodesmath.561316

Abstract

References

  • [1] A. Alilooee, S. Faridi, On the resolution of path ideals of cycles, Comm. Algebra 43(12) (2015) 5413–5433.
  • [2] F. Ardila, R. P. Stanley, Tilings, Math. Intelligencer 32(4) (2010) 32–43.
  • [3] P. K. Benedetto, A. N. Loehr, Domino tiling graphs, Ars Combin. 109 (2013), 3–29.
  • [4] R. R. Bouchat, H. T. Hà, A. O’Keefe, Path ideals of rooted trees and their graded Betti numbers, J. Combin. Theory Ser. A 118(8) (2011) 2411–2425.
  • [5] R. R. Bouchat, T. M. Brown, Multi-graded Betti numbers of path ideals of trees, J. Algebra Appl. 16(1) (2017) 1750018.
  • [6] R. R. Bouchat, T. M. Brown, Minimal free resolutions of $2\times n$ domino tilings, J. Algebra Appl. online ready.
  • [7] S. Butler, P. Horn, E. Tressler, Intersection domino tilings, Fibonacci Quart. 48(2) (2010) 114–120.
  • [8] A. Conca, E. De Negri, M-sequences, graph ideals, and ladder ideals of linear type, J. Algebra 211(2) (1999) 599–624.
  • [9] N. Erey, S. Faridi, Multigraded Betti numbers of simplicial forests J. Pure Appl. Algebra 218(10) (2014) 1800–1805.
  • [10] S. Faridi, The facet ideal of a simplicial complex, Manuscripta Math. 109(2) (2002) 159–174.
  • [11] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at https://faculty.math.illinois.edu/Macaulay2/.
  • [12] H. T. Hà, A. Van Tuyl, Monomial ideals, edge ideals of hyper graphs, and their graded Betti numbers, J. Algebr. Comb. 27(2) (2008) 215–245.
  • [13] P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, Physica 27(12) (1961) 1209–1225.
  • [14] E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Springer-Verlag, New York, 2005.
  • [15] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, (2018).
  • [16] H. N. V. Temperley, M. E. Fisher, Dimer problem in statistical mechanics-an exact result, Philosophical Magazine, 6(68) (1961) 1061–1063.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rachelle R. Bouchat This is me 0000-0003-2286-0805

Tricia Muldoon Brown This is me 0000-0003-3835-1175

Publication Date May 7, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Bouchat, R. . R., & Brown, T. M. (2019). Fibonacci numbers and resolutions of domino ideals. Journal of Algebra Combinatorics Discrete Structures and Applications, 6(2), 63-74. https://doi.org/10.13069/jacodesmath.561316
AMA Bouchat RR, Brown TM. Fibonacci numbers and resolutions of domino ideals. Journal of Algebra Combinatorics Discrete Structures and Applications. May 2019;6(2):63-74. doi:10.13069/jacodesmath.561316
Chicago Bouchat, Rachelle R., and Tricia Muldoon Brown. “Fibonacci Numbers and Resolutions of Domino Ideals”. Journal of Algebra Combinatorics Discrete Structures and Applications 6, no. 2 (May 2019): 63-74. https://doi.org/10.13069/jacodesmath.561316.
EndNote Bouchat RR, Brown TM (May 1, 2019) Fibonacci numbers and resolutions of domino ideals. Journal of Algebra Combinatorics Discrete Structures and Applications 6 2 63–74.
IEEE R. . R. Bouchat and T. M. Brown, “Fibonacci numbers and resolutions of domino ideals”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 6, no. 2, pp. 63–74, 2019, doi: 10.13069/jacodesmath.561316.
ISNAD Bouchat, Rachelle R. - Brown, Tricia Muldoon. “Fibonacci Numbers and Resolutions of Domino Ideals”. Journal of Algebra Combinatorics Discrete Structures and Applications 6/2 (May 2019), 63-74. https://doi.org/10.13069/jacodesmath.561316.
JAMA Bouchat RR, Brown TM. Fibonacci numbers and resolutions of domino ideals. Journal of Algebra Combinatorics Discrete Structures and Applications. 2019;6:63–74.
MLA Bouchat, Rachelle R. and Tricia Muldoon Brown. “Fibonacci Numbers and Resolutions of Domino Ideals”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 6, no. 2, 2019, pp. 63-74, doi:10.13069/jacodesmath.561316.
Vancouver Bouchat RR, Brown TM. Fibonacci numbers and resolutions of domino ideals. Journal of Algebra Combinatorics Discrete Structures and Applications. 2019;6(2):63-74.