Research Article
BibTex RIS Cite
Year 2019, Volume: 6 Issue: 3, 163 - 172, 13.09.2019
https://doi.org/10.13069/jacodesmath.617244

Abstract

References

  • [1] T. Abualrub, I. Siap, Constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$, J. Franklin Inst. 346(5) (2009) 520–529.
  • [2] M. Ashraf, G. Mohammed, $(1+2u)$-constacyclic codes over $\mathbb{Z}_{4} +u\mathbb{Z}_{4}$ (preprint) (2015).
  • [3] N. Aydin, Y. Cengellenmis, A. Dertli, On some constacyclic codes over $\mathbb{Z}_{4}[u]/\langle u^{2}-1\rangle$, their $\mathbb{Z}_{4}$ images, and new codes, Des. Codes Cryptogr. 86(6) (2018) 1249–1255.
  • [4] T. Bag, H. Islam, O. Prakash, A. K. Upadhyay, A study of constacyclic codes over the ring $\mathbb{Z}_{4}[u]/\langle u^{2}-3\rangle$, Discrete Math. Algorithms Appl. 10(4) (2018) 1850056.
  • [5] W. Bosma, J. Cannon, Handbook of Magma Functions, Univ. of Sydney 1995.
  • [6] H. Islam, O. Prakash, A study of cyclic and constacyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}+v\mathbb{Z}_{4}$, Int. J. Inf. Coding Theory 5(2) (2018) 155–168.
  • [7] H. Islam, T. Bag, O. Prakash, A class of constacyclic codes over $\mathbb{Z}_{4}[u]/\langle u^{k}\rangle$, J. Appl. Math. Comput. 60(1–2) (2019) 237–251.
  • [8] H. Islam, O. Prakash, A note on skew constacyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}$, Discrete Math. Algorithms Appl. 11(03) (2019) 1950030.
  • [9] S. Karadeniz, B. Yildiz, (1 + v)-constacyclic codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}+uv\mathbb{F}_{2}$, J. Franklin Inst. 348(9) (2011) 2625–2632.
  • [10] P. K. Kewat, B. Ghosh, S. Pattanayak, Cyclic codes over $\mathbb{Z}_{p}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$, Finite Fields Appl. 34 (2015) 161-175.
  • [11] M. Ozen, F. Z. Uzekmek, N. Aydin, N. T. Ozzaim, Cyclic and some constacyclic codes over the ring $\mathbb{Z}_{4}[u]/\langle u^2 -1\rangle$, Finite Fields Appl. 38 (2016) 27-39.
  • [12] J. F. Qian, L. N. Zhang, S. X. Zhu, $(1+u)$ Constacyclic and cyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$, Appl. Math. Lett. 19(8) (2006) 820-823.
  • [13] M. Shi, L. Qian, L. Sok, N. Aydin, P. Sole, On constacyclic codes over $\mathbb{Z}_{4}[u]/\langle u^2 -1\rangle$ and their Gray images, Finite Fields Appl. 45 (2017) 86-95.
  • [14] H. Yu, Y. Wang, M. Shi, $(1+u)$--Constacyclic codes over $\mathbb{Z}_{4} +u\mathbb{Z}_{4}$, Springer Plus 5 (2016) 1325(1-8).

A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui

Year 2019, Volume: 6 Issue: 3, 163 - 172, 13.09.2019
https://doi.org/10.13069/jacodesmath.617244

Abstract

For odd prime $p$, this paper studies $(1+(p-2)u)$-constacyclic codes over the ring $R= \mathbb{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\rangle$. We show that the Gray images of $(1+(p-2)u)$-constacyclic codes over $R$ are cyclic and permutation equivalent to a quasi cyclic code over $\mathbb{Z}_{p}$. We derive the generators for $(1+(p-2)u)$-constacyclic and principally generated $(1+(p-2)u)$-constacyclic codes over $R$. Among others, we extend our results for skew $(1+(p-2)u)$-constacyclic codes over $R$ and exhibit the relation between skew $(1+(p-2)u)$-constacyclic codes with the other linear codes. Finally, as an application of our study, we compute several non trivial linear codes by using the Gray images of $(1+(p-2)u)$-constacyclic codes over this ring $R$.

References

  • [1] T. Abualrub, I. Siap, Constacyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$, J. Franklin Inst. 346(5) (2009) 520–529.
  • [2] M. Ashraf, G. Mohammed, $(1+2u)$-constacyclic codes over $\mathbb{Z}_{4} +u\mathbb{Z}_{4}$ (preprint) (2015).
  • [3] N. Aydin, Y. Cengellenmis, A. Dertli, On some constacyclic codes over $\mathbb{Z}_{4}[u]/\langle u^{2}-1\rangle$, their $\mathbb{Z}_{4}$ images, and new codes, Des. Codes Cryptogr. 86(6) (2018) 1249–1255.
  • [4] T. Bag, H. Islam, O. Prakash, A. K. Upadhyay, A study of constacyclic codes over the ring $\mathbb{Z}_{4}[u]/\langle u^{2}-3\rangle$, Discrete Math. Algorithms Appl. 10(4) (2018) 1850056.
  • [5] W. Bosma, J. Cannon, Handbook of Magma Functions, Univ. of Sydney 1995.
  • [6] H. Islam, O. Prakash, A study of cyclic and constacyclic codes over $\mathbb{Z}_{4}+u\mathbb{Z}_{4}+v\mathbb{Z}_{4}$, Int. J. Inf. Coding Theory 5(2) (2018) 155–168.
  • [7] H. Islam, T. Bag, O. Prakash, A class of constacyclic codes over $\mathbb{Z}_{4}[u]/\langle u^{k}\rangle$, J. Appl. Math. Comput. 60(1–2) (2019) 237–251.
  • [8] H. Islam, O. Prakash, A note on skew constacyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}$, Discrete Math. Algorithms Appl. 11(03) (2019) 1950030.
  • [9] S. Karadeniz, B. Yildiz, (1 + v)-constacyclic codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}+uv\mathbb{F}_{2}$, J. Franklin Inst. 348(9) (2011) 2625–2632.
  • [10] P. K. Kewat, B. Ghosh, S. Pattanayak, Cyclic codes over $\mathbb{Z}_{p}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$, Finite Fields Appl. 34 (2015) 161-175.
  • [11] M. Ozen, F. Z. Uzekmek, N. Aydin, N. T. Ozzaim, Cyclic and some constacyclic codes over the ring $\mathbb{Z}_{4}[u]/\langle u^2 -1\rangle$, Finite Fields Appl. 38 (2016) 27-39.
  • [12] J. F. Qian, L. N. Zhang, S. X. Zhu, $(1+u)$ Constacyclic and cyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$, Appl. Math. Lett. 19(8) (2006) 820-823.
  • [13] M. Shi, L. Qian, L. Sok, N. Aydin, P. Sole, On constacyclic codes over $\mathbb{Z}_{4}[u]/\langle u^2 -1\rangle$ and their Gray images, Finite Fields Appl. 45 (2017) 86-95.
  • [14] H. Yu, Y. Wang, M. Shi, $(1+u)$--Constacyclic codes over $\mathbb{Z}_{4} +u\mathbb{Z}_{4}$, Springer Plus 5 (2016) 1325(1-8).
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tushar Bag This is me 0000-0002-7613-8351

Habibul Islam 0000-0002-2196-1586

Om Prakash 0000-0002-6512-4229

Ashish K. Upadhyay This is me 0000-0001-6307-6799

Publication Date September 13, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

APA Bag, T., Islam, H., Prakash, O., Upadhyay, A. K. (2019). A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui. Journal of Algebra Combinatorics Discrete Structures and Applications, 6(3), 163-172. https://doi.org/10.13069/jacodesmath.617244
AMA Bag T, Islam H, Prakash O, Upadhyay AK. A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui. Journal of Algebra Combinatorics Discrete Structures and Applications. September 2019;6(3):163-172. doi:10.13069/jacodesmath.617244
Chicago Bag, Tushar, Habibul Islam, Om Prakash, and Ashish K. Upadhyay. “A Note on Constacyclic and Skew Constacyclic Codes over the Ring Zp[u, v]/Hu 2 − U, V2 − V, Uv − Vui”. Journal of Algebra Combinatorics Discrete Structures and Applications 6, no. 3 (September 2019): 163-72. https://doi.org/10.13069/jacodesmath.617244.
EndNote Bag T, Islam H, Prakash O, Upadhyay AK (September 1, 2019) A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui. Journal of Algebra Combinatorics Discrete Structures and Applications 6 3 163–172.
IEEE T. Bag, H. Islam, O. Prakash, and A. K. Upadhyay, “A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 6, no. 3, pp. 163–172, 2019, doi: 10.13069/jacodesmath.617244.
ISNAD Bag, Tushar et al. “A Note on Constacyclic and Skew Constacyclic Codes over the Ring Zp[u, v]/Hu 2 − U, V2 − V, Uv − Vui”. Journal of Algebra Combinatorics Discrete Structures and Applications 6/3 (September 2019), 163-172. https://doi.org/10.13069/jacodesmath.617244.
JAMA Bag T, Islam H, Prakash O, Upadhyay AK. A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui. Journal of Algebra Combinatorics Discrete Structures and Applications. 2019;6:163–172.
MLA Bag, Tushar et al. “A Note on Constacyclic and Skew Constacyclic Codes over the Ring Zp[u, v]/Hu 2 − U, V2 − V, Uv − Vui”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 6, no. 3, 2019, pp. 163-72, doi:10.13069/jacodesmath.617244.
Vancouver Bag T, Islam H, Prakash O, Upadhyay AK. A note on constacyclic and skew constacyclic codes over the ring Zp[u, v]/hu 2 − u, v2 − v, uv − vui. Journal of Algebra Combinatorics Discrete Structures and Applications. 2019;6(3):163-72.