Research Article
BibTex RIS Cite

Locally recoverable codes from planar graphs

Year 2020, Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections), 35 - 53, 29.02.2020
https://doi.org/10.13069/jacodesmath.645021

Abstract

In this paper we apply Kadhe and Calderbank's definition of LRCs from convex polyhedra and planar graphs \cite{KAD} to analyze the codes resulting from 3-connected regular and almost regular planar graphs. The resulting edge codes are locally recoverable with availability two. We prove that the minimum distance of planar graph LRCs is equal to the girth of the graph, and we also establish a new bound on the rate of planar graph edge codes. Constructions of regular and almost regular planar graphs are given, and their associated code parameters are determined. In certain cases, the code families meet the rate bound.

References

  • [1] H. J. Broersma, A. J. W. Duijvestijn, F. Göbel, Generating all 3-connected 4-regular planar graphs from the octahedron graph, J. Graph Theor. 17(5) (1993) 613–620.
  • [2] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of codeword symbols, IEEE Trans. Inform. Theory 58(11) (2012) 6925–6934.
  • [3] M. Hasheminezhad, B. D. McKay, T. Reeves, Recursive generation of simple planar 5-regular graphs and pentangulations, Journal of Graph Algorithms and Applications 15(3) (2011) 417–436.
  • [4] S. Kadhe, R. Calderbank, Rate optimal binary linear locally repairable codes with small availability, In 2017 IEEE International Symposium on Information Theory (ISIT) (2017) 166–170.
  • [5] S. Kadhe, R. Calderbank, Rate optimal binary linear locally repairable codes with small availability, arXiv preprint, arXiv:1701.02456, 2017.
  • [6] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theor. 30(2) (1999) 137–146.
  • [7] M. Meringer, Regular planar graphs, available online at http://www.mathe2.uni-bayreuth.de/ markus/reggraphs.html, accessed 2009.
  • [8] N. Prakash, V. Lalitha, P. Vijay Kumar, Codes with locality for two erasures, In 2014 IEEE International Symposium on Information Theory (2014) 1962–1966.
  • [9] E. F. Schmeichel, S. L. Hakimi, On planar graphical degree sequences, SIAM J. Appl. Math. 32(3)(1977) 598–609.
  • [10] E. Steinitz, Vorlesungen {\"u}ber die Theorie der Polyeder: unter Einschlu{\ss} der Elemente der Topologie, volume 41, Springer-Verlag, 2013.
Year 2020, Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections), 35 - 53, 29.02.2020
https://doi.org/10.13069/jacodesmath.645021

Abstract

References

  • [1] H. J. Broersma, A. J. W. Duijvestijn, F. Göbel, Generating all 3-connected 4-regular planar graphs from the octahedron graph, J. Graph Theor. 17(5) (1993) 613–620.
  • [2] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of codeword symbols, IEEE Trans. Inform. Theory 58(11) (2012) 6925–6934.
  • [3] M. Hasheminezhad, B. D. McKay, T. Reeves, Recursive generation of simple planar 5-regular graphs and pentangulations, Journal of Graph Algorithms and Applications 15(3) (2011) 417–436.
  • [4] S. Kadhe, R. Calderbank, Rate optimal binary linear locally repairable codes with small availability, In 2017 IEEE International Symposium on Information Theory (ISIT) (2017) 166–170.
  • [5] S. Kadhe, R. Calderbank, Rate optimal binary linear locally repairable codes with small availability, arXiv preprint, arXiv:1701.02456, 2017.
  • [6] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theor. 30(2) (1999) 137–146.
  • [7] M. Meringer, Regular planar graphs, available online at http://www.mathe2.uni-bayreuth.de/ markus/reggraphs.html, accessed 2009.
  • [8] N. Prakash, V. Lalitha, P. Vijay Kumar, Codes with locality for two erasures, In 2014 IEEE International Symposium on Information Theory (2014) 1962–1966.
  • [9] E. F. Schmeichel, S. L. Hakimi, On planar graphical degree sequences, SIAM J. Appl. Math. 32(3)(1977) 598–609.
  • [10] E. Steinitz, Vorlesungen {\"u}ber die Theorie der Polyeder: unter Einschlu{\ss} der Elemente der Topologie, volume 41, Springer-Verlag, 2013.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kathryn Haymaker This is me 0000-0001-5965-4197

Justin O'pella This is me 0000-0002-1381-4172

Publication Date February 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections)

Cite

APA Haymaker, K., & O’pella, J. (2020). Locally recoverable codes from planar graphs. Journal of Algebra Combinatorics Discrete Structures and Applications, 7(1), 35-53. https://doi.org/10.13069/jacodesmath.645021
AMA Haymaker K, O’pella J. Locally recoverable codes from planar graphs. Journal of Algebra Combinatorics Discrete Structures and Applications. February 2020;7(1):35-53. doi:10.13069/jacodesmath.645021
Chicago Haymaker, Kathryn, and Justin O’pella. “Locally Recoverable Codes from Planar Graphs”. Journal of Algebra Combinatorics Discrete Structures and Applications 7, no. 1 (February 2020): 35-53. https://doi.org/10.13069/jacodesmath.645021.
EndNote Haymaker K, O’pella J (February 1, 2020) Locally recoverable codes from planar graphs. Journal of Algebra Combinatorics Discrete Structures and Applications 7 1 35–53.
IEEE K. Haymaker and J. O’pella, “Locally recoverable codes from planar graphs”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 7, no. 1, pp. 35–53, 2020, doi: 10.13069/jacodesmath.645021.
ISNAD Haymaker, Kathryn - O’pella, Justin. “Locally Recoverable Codes from Planar Graphs”. Journal of Algebra Combinatorics Discrete Structures and Applications 7/1 (February 2020), 35-53. https://doi.org/10.13069/jacodesmath.645021.
JAMA Haymaker K, O’pella J. Locally recoverable codes from planar graphs. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7:35–53.
MLA Haymaker, Kathryn and Justin O’pella. “Locally Recoverable Codes from Planar Graphs”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 7, no. 1, 2020, pp. 35-53, doi:10.13069/jacodesmath.645021.
Vancouver Haymaker K, O’pella J. Locally recoverable codes from planar graphs. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7(1):35-53.

Cited By

Перечисление помеченных непланарных пентациклических блоков
Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
https://doi.org/10.36535/0233-6723-2021-193-28-32