Constructions of MDS convolutional codes using superregular matrices
Year 2020,
Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections), 73 - 84, 29.02.2020
Julia Lieb
Raquel Pinto
Abstract
Maximum distance separable convolutional codes are the codes that present best performance in error correction among all convolutional codes with certain rate and degree. In this paper, we show that taking the constant matrix coefficients of a polynomial matrix as submatrices of a superregular matrix, we obtain a column reduced generator matrix of an MDS convolutional code with a certain rate and a certain degree. We then present two novel constructions that fulfill these conditions by considering two types of superregular matrices.
Supporting Institution
Funda\c{c}\~ao para a Ci\^encia e a Tecnologia (FCT)
Project Number
UID/MAT/04106/2019
Thanks
This work was supported by Funda\c{c}\~ao para a Ci\^encia e a Tecnologia (FCT) within project UID/MAT/04106/2019 (CIDMA) and the German Research Foundation (DFG) within grant LI3103/1-1.
References
- [1] P. J. Almeida, D. Napp, R. Pinto, A new class of superregular matrices and MDP convolutional
codes, Linear Algebra Appl. 439(7) (2013) 2145–2157.
- [2] P. J. Almeida, D. Napp, R. Pinto, Superregular matrices and applications to convolutional codes,
Linear Algebra Appl. 499 (2016) 1–25.
- [3] J. Climent, D. Napp, C. Perea, R. Pinto, A construction of MDS 2D convolutional codes of rate $1/n$
based on superregular matrices, Linear Algebra Appl. 437(3) (2012) 766–780.
- [4] J. Climent, D. Napp, C. Perea, R. Pinto, Maximum distance seperable 2D convolutional codes, IEEE
Trans. Inform. Theory 62(2) (2016) 669–680.
- [5] G. Forney, Convolutional codes I: Algebraic structure, IEEE Transactions on Information Theory,
16(6) (1970) 720–738. Correction, Ibid., IT-17, (1971) 360.
- [6] H. Gluesing–Luerssen, B. Langfeld, A class of one–dimensional MDS convolutional codes, J. Algebra
Appl. 5(4) (2006) 505–520.
- [7] H. Gluesing–Luerssen, J. Rosenthal, R. Smarandache, Strongly–MDS convolutional codes, IEEE
Trans. Inform. Theory 52(2) (2006) 584–598.
- [8] R. Hutchinson, J. Rosenthal, R. Smarandache, Convolutional codes with maximum distance profile,
Systems & Control Letters 54 (2005) 53–63.
- [9] J. Justesen, An algebraic construction of rate $1/{\nu}$ convolutional codes, IEEE Trans. Inform. Theory
21(5) (1975) 577–580.
- [10] T. Kailath, Linear Systems, Englewood Cliffs, N.J.: Prentice Hall, 1980.
- [11] J. Lieb, Complete MDP convolutional codes, J. Algebra Appl. 18(6) (2019) 1950105 (13 pages).
- [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error–Correcting Codes, 6th ed. Amsterdam,
The Netherlands: North–Holland, 1988.
- [13] J. Rosenthal, R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra
Engrg. Comm. Comput. 10(1) (1999) 15–32.
- [14] R. Roth, A. Lempel, On MDS codes via Cauchy matrices, IEEE Trans. Inform. Theory 35(6) (1989)
1314–1319.
- [15] R. Smarandache, H. Gluesing–Luerssen, J. Rosenthal, Constructions for MDS–convolutional codes,
IEEE Trans. Inform. Theory 47(5) (2001) 2045–2049.
- [16] R. Smarandache, J. Rosenthal, A state space approach for constructing MDS rate $1/n$ convolutional
codes, Proceedings of the 1998 IEEE Information TheoryWorkshop on Information Theory, 116–117.