Research Article
BibTex RIS Cite

$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes

Year 2020, Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections), 85 - 101, 29.02.2020
https://doi.org/10.13069/jacodesmath.671815

Abstract

In this paper, we study skew constacyclic codes over the ring $\mathbb{Z}_{q}R$ where $R=\mathbb{Z}_{q}+u\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0.$ We give the definition of these codes as subsets of the ring $\mathbb{Z}_{q}^{\alpha}R^{\beta}$. Some structural properties of the skew polynomial ring $ R[x,\Theta]$ are discussed, where $ \Theta$ is an automorphism of $R.$ We describe the generator polynomials of skew constacyclic codes over $\mathbb{Z}_{q}R,$ also we determine their minimal spanning sets and their sizes. Further, by using the Gray images of skew constacyclic codes over $\mathbb{Z}_{q}R$ we obtained some new linear codes over $\mathbb{Z}_{4}$. Finally, we have generalized these codes to double skew constacyclic codes over $\mathbb{Z}_{q}R$.

References

  • [1] T. Abualrub, I. Siap, Cyclic codes over the rings Z2 +uZ2 and Z2 +uZ2 +u2Z2, Designs, Codes and Cryptography, 42 (3), pp. 273–287, 2007.
  • [2] T. Abualrub, I. Siap and I. Aydogdu, Z2(Z2 + uZ2)-Linear cyclic codes, Proceedings of the IMECS 2014, (2), Hong Kong, 2014.
  • [3] T. Abualrub, I. Siap, and N. Aydin, Z2Z4􀀀additive cyclic codes, IEEE. Trans. Inf. Theory, vol. 60, no. 3, pp. 1508–514, 2014.
  • [4] R. Ackerman and N. Aydin, New quinary linear codes from quasi-twisted codes and their duals, Appl. Math. Lett., 24(4), pp. 512–515, 2011.
  • [5] J. B. Ayats, C. F. Córdoba and R. T. Valls, Z2Z4-additive cyclic codes, generator polynomials and dual codes, IEEE Transactions on Information Theory, (62), pp. 6348–6354, 2016.
  • [6] I. Aydogdu, T. Abualrub and I. Siap, Z2Z2[u]􀀀cyclic and constacyclic codes, IEEE Transactions on Information Theory, 63 (8), pp. 4883–4893, 2016.
  • [7] N. Aydin and T. Asamov, A Database of Z4 Codes, Journal of Combinatorics, Information & System Sciences, 34 (1-4), pp. 1–12, 2009.
  • [8] N. Aydin, N. Connolly and M. Grassl, Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes, Adv. Math. of Commun., 11 (1), pp. 245–258, 2017.
  • [9] N. Aydin, N. Connolly and J. Murphree, New binary linear codes from QC codes and an augmentation algorithm, Appl. Algebra Eng. Commun. Comput., 28( 4), pp. 339–350, 2017.
  • [10] N. Aydin, Y. Cengellenmis and A. Dertli, On some constacyclic codes over Z4[u]=hu2 􀀀 1i, their Z4 images, and new codes, Designs, Codes and Cryptography, 86 (6), pp. 1249–1255, 2018.
  • [11] N. Aydin, I. Siap and D. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Designs, Codes and Cryptography, 24 (3), pp. 313–326, 2001.
  • [12] N. Aydin and I. Siap, New quasi-cyclic codes over F5, Appl. Math. Lett., 15 (7), pp. 833–836, 2002. [13] N. Aydin and A. Halilovic, A Generalization of Quasi-twisted Codes: Multi-twisted codes, Finite Fields and Their Applications, (45 ), pp. 96–106, 2017.
  • [14] R. K. Bandi and M. Bhaintwal, A note on cyclic codes over Z4 + uZ4, Discrete Mathematics, Algorithms and Applications, 8 (1), pp. 1–17, 2016.
  • [15] N. Bennenni, K. Guenda and S. Mesnager, DNA cyclic codes over rings, Adv. in Math. of Comm., 11 (1), pp. 83–98, 2017.
  • [16] D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18(4), pp. 379–389, 2007.
  • [17] R. Daskalov, P. Hristov, New binary one-generator quasi-cyclic codes, IEEE Trans. Inf. Theory, 49 (11), pp 3001–3005, 2003.
  • [18] R. Daskalov, P. Hristov and E. Metodieva, New minimum distance bounds for linear codes over GF(5), Discrete Math., 275 (1–3), pp. 97–110, 2004.
  • [19] Database of Z4 Codes. [online] Z4Codes. info (Accessed March, 2018).
  • [20] H. Q. Dinh, A. K. Singh, S. Pattanayak and S. Sriboonchitta, Cyclic DNA codes over the ringF2 + uF2 + vF2 + uvF2 + v2F2 + uv2F2, Designs, Codes and Cryptography, 86 (7), pp. 1451–1467,2018.
  • [21] M.F. Ezerman, S. Ling, P. Solé and O. Yemen, From skew-cyclic codes to asymmetric quantum code,Adv. in Math. of Comm., 5 (1), pp. 41–57, 2011.
  • [22] J. Gao., Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform., 31 (3–4), pp. 337–342, 2013.
  • [23] I. Siap and N. Kulhan, The Structure of Generalized Quasi Cyclic Codes, Appl. Math. E-Notes, vol. 5, pp. 24–30, 2005.
  • [24] J. Gao, F. W. Fu, L. Xiao and R. K. Bandi, Some results on cyclic codes over Zq + uZq, Discrete Mathematics, Algorithms and Applications, 7 (4), pp. 1–9, 2015.
  • [25] J. Gao, F. Ma and F. Fu, Skew constacyclic codes over the ring Fq + vFq; Appl.Comput. Math., 6 (3), pp. 286–295, 2017 .
  • [26] M. Grassl, Code Tables: Bounds on the parameters of codes, online, http://www.codetables.de/
  • [27] F. Gursoy, I. Siap and B. Yildiz, Construction of skew cyclic codes over Fq + vFq, Advances in Mathematics of Communications, 8 (3), pp. 313–322, 2014.
  • [28] S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic over finite chain rings, Adv. Math.Commun., 6 (1), pp. 39–63, 2012.
  • [29] P. Li, W. Dai and X. Kai, On Z2Z2[u]􀀀(1+u)-additive constacyclic, arXiv:1611.03169v1 [cs.IT] 10 Nov 2016.
  • [30] Magma computer algebra system, online, http://magma.maths.usyd.edu.au/
  • [31] J. F. Qian, L. N. Zhang and S. X. Zhu, (1+u)-Constacyclic and cyclic codes over F2 +uF2, Applied Mathematics Letters, 19 (8), pp. 820–823, 2006.
  • [32] A. Sharma and M. Bhaintwal, A class of skew-constacyclic codes over Z4 + uZ4, Int. J. Information and Coding Theory, 4 (4), pp. 289–303, 2017.
  • [33] I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Information and Coding Theory, 2 (1), pp. 10–20, 2011.
  • [34] B. Yildiz, N. Aydin, Cyclic codes over Z4 +uZ4 and their Z4-images , Int. J. Information and coding Theory, 2 (4), pp. 226–237, 2014.
Year 2020, Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections), 85 - 101, 29.02.2020
https://doi.org/10.13069/jacodesmath.671815

Abstract

References

  • [1] T. Abualrub, I. Siap, Cyclic codes over the rings Z2 +uZ2 and Z2 +uZ2 +u2Z2, Designs, Codes and Cryptography, 42 (3), pp. 273–287, 2007.
  • [2] T. Abualrub, I. Siap and I. Aydogdu, Z2(Z2 + uZ2)-Linear cyclic codes, Proceedings of the IMECS 2014, (2), Hong Kong, 2014.
  • [3] T. Abualrub, I. Siap, and N. Aydin, Z2Z4􀀀additive cyclic codes, IEEE. Trans. Inf. Theory, vol. 60, no. 3, pp. 1508–514, 2014.
  • [4] R. Ackerman and N. Aydin, New quinary linear codes from quasi-twisted codes and their duals, Appl. Math. Lett., 24(4), pp. 512–515, 2011.
  • [5] J. B. Ayats, C. F. Córdoba and R. T. Valls, Z2Z4-additive cyclic codes, generator polynomials and dual codes, IEEE Transactions on Information Theory, (62), pp. 6348–6354, 2016.
  • [6] I. Aydogdu, T. Abualrub and I. Siap, Z2Z2[u]􀀀cyclic and constacyclic codes, IEEE Transactions on Information Theory, 63 (8), pp. 4883–4893, 2016.
  • [7] N. Aydin and T. Asamov, A Database of Z4 Codes, Journal of Combinatorics, Information & System Sciences, 34 (1-4), pp. 1–12, 2009.
  • [8] N. Aydin, N. Connolly and M. Grassl, Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes, Adv. Math. of Commun., 11 (1), pp. 245–258, 2017.
  • [9] N. Aydin, N. Connolly and J. Murphree, New binary linear codes from QC codes and an augmentation algorithm, Appl. Algebra Eng. Commun. Comput., 28( 4), pp. 339–350, 2017.
  • [10] N. Aydin, Y. Cengellenmis and A. Dertli, On some constacyclic codes over Z4[u]=hu2 􀀀 1i, their Z4 images, and new codes, Designs, Codes and Cryptography, 86 (6), pp. 1249–1255, 2018.
  • [11] N. Aydin, I. Siap and D. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Designs, Codes and Cryptography, 24 (3), pp. 313–326, 2001.
  • [12] N. Aydin and I. Siap, New quasi-cyclic codes over F5, Appl. Math. Lett., 15 (7), pp. 833–836, 2002. [13] N. Aydin and A. Halilovic, A Generalization of Quasi-twisted Codes: Multi-twisted codes, Finite Fields and Their Applications, (45 ), pp. 96–106, 2017.
  • [14] R. K. Bandi and M. Bhaintwal, A note on cyclic codes over Z4 + uZ4, Discrete Mathematics, Algorithms and Applications, 8 (1), pp. 1–17, 2016.
  • [15] N. Bennenni, K. Guenda and S. Mesnager, DNA cyclic codes over rings, Adv. in Math. of Comm., 11 (1), pp. 83–98, 2017.
  • [16] D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18(4), pp. 379–389, 2007.
  • [17] R. Daskalov, P. Hristov, New binary one-generator quasi-cyclic codes, IEEE Trans. Inf. Theory, 49 (11), pp 3001–3005, 2003.
  • [18] R. Daskalov, P. Hristov and E. Metodieva, New minimum distance bounds for linear codes over GF(5), Discrete Math., 275 (1–3), pp. 97–110, 2004.
  • [19] Database of Z4 Codes. [online] Z4Codes. info (Accessed March, 2018).
  • [20] H. Q. Dinh, A. K. Singh, S. Pattanayak and S. Sriboonchitta, Cyclic DNA codes over the ringF2 + uF2 + vF2 + uvF2 + v2F2 + uv2F2, Designs, Codes and Cryptography, 86 (7), pp. 1451–1467,2018.
  • [21] M.F. Ezerman, S. Ling, P. Solé and O. Yemen, From skew-cyclic codes to asymmetric quantum code,Adv. in Math. of Comm., 5 (1), pp. 41–57, 2011.
  • [22] J. Gao., Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform., 31 (3–4), pp. 337–342, 2013.
  • [23] I. Siap and N. Kulhan, The Structure of Generalized Quasi Cyclic Codes, Appl. Math. E-Notes, vol. 5, pp. 24–30, 2005.
  • [24] J. Gao, F. W. Fu, L. Xiao and R. K. Bandi, Some results on cyclic codes over Zq + uZq, Discrete Mathematics, Algorithms and Applications, 7 (4), pp. 1–9, 2015.
  • [25] J. Gao, F. Ma and F. Fu, Skew constacyclic codes over the ring Fq + vFq; Appl.Comput. Math., 6 (3), pp. 286–295, 2017 .
  • [26] M. Grassl, Code Tables: Bounds on the parameters of codes, online, http://www.codetables.de/
  • [27] F. Gursoy, I. Siap and B. Yildiz, Construction of skew cyclic codes over Fq + vFq, Advances in Mathematics of Communications, 8 (3), pp. 313–322, 2014.
  • [28] S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic over finite chain rings, Adv. Math.Commun., 6 (1), pp. 39–63, 2012.
  • [29] P. Li, W. Dai and X. Kai, On Z2Z2[u]􀀀(1+u)-additive constacyclic, arXiv:1611.03169v1 [cs.IT] 10 Nov 2016.
  • [30] Magma computer algebra system, online, http://magma.maths.usyd.edu.au/
  • [31] J. F. Qian, L. N. Zhang and S. X. Zhu, (1+u)-Constacyclic and cyclic codes over F2 +uF2, Applied Mathematics Letters, 19 (8), pp. 820–823, 2006.
  • [32] A. Sharma and M. Bhaintwal, A class of skew-constacyclic codes over Z4 + uZ4, Int. J. Information and Coding Theory, 4 (4), pp. 289–303, 2017.
  • [33] I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Information and Coding Theory, 2 (1), pp. 10–20, 2011.
  • [34] B. Yildiz, N. Aydin, Cyclic codes over Z4 +uZ4 and their Z4-images , Int. J. Information and coding Theory, 2 (4), pp. 226–237, 2014.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahlem Melakhessou This is me

Nuh Aydin

Zineb Hebbache This is me

Kenza Guenda This is me

Publication Date February 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1 (Special Issue in Algebraic Coding Theory: New Trends and Its Connections)

Cite

APA Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K. (2020). $\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes. Journal of Algebra Combinatorics Discrete Structures and Applications, 7(1), 85-101. https://doi.org/10.13069/jacodesmath.671815
AMA Melakhessou A, Aydin N, Hebbache Z, Guenda K. $\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes. Journal of Algebra Combinatorics Discrete Structures and Applications. February 2020;7(1):85-101. doi:10.13069/jacodesmath.671815
Chicago Melakhessou, Ahlem, Nuh Aydin, Zineb Hebbache, and Kenza Guenda. “$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ Linear Skew Constacyclic Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 7, no. 1 (February 2020): 85-101. https://doi.org/10.13069/jacodesmath.671815.
EndNote Melakhessou A, Aydin N, Hebbache Z, Guenda K (February 1, 2020) $\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes. Journal of Algebra Combinatorics Discrete Structures and Applications 7 1 85–101.
IEEE A. Melakhessou, N. Aydin, Z. Hebbache, and K. Guenda, “$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 7, no. 1, pp. 85–101, 2020, doi: 10.13069/jacodesmath.671815.
ISNAD Melakhessou, Ahlem et al. “$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ Linear Skew Constacyclic Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 7/1 (February 2020), 85-101. https://doi.org/10.13069/jacodesmath.671815.
JAMA Melakhessou A, Aydin N, Hebbache Z, Guenda K. $\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7:85–101.
MLA Melakhessou, Ahlem et al. “$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ Linear Skew Constacyclic Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 7, no. 1, 2020, pp. 85-101, doi:10.13069/jacodesmath.671815.
Vancouver Melakhessou A, Aydin N, Hebbache Z, Guenda K. $\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7(1):85-101.