Let $\Gamma=\Gamma(\mathbb{V},\mathbb{E})$ be a simple (i.e., multiple edges and loops and are not allowed), connected (i.e., there exists a path between every pair of vertices), and an undirected (i.e., all the edges are bidirectional) graph. Let $d_{\Gamma}(\varrho_{i},\varrho_{j})$ denotes the geodesic distance between two nodes $\varrho_{i},\varrho_{j} \in \mathbb{V}$. The problem of characterizing the classes of plane graphs with constant metric dimensions is of great interest nowadays. In this article, we characterize three classes of plane graphs (viz., $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$, and $\mathfrak{L}_{n}$) which are generated by taking n-copies of the complete bipartite graph (or a star) $K_{1,5}$, and all of these plane graphs are radially symmetrical with the constant metric dimension. We show that three vertices is a minimal requirement for the unique identification of all vertices of these three classes of plane graphs.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Early Pub Date | October 9, 2021 |
Publication Date | September 15, 2021 |
Published in Issue | Year 2021 Volume: 8 Issue: 3 |