Research Article
BibTex RIS Cite

On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$

Year 2021, Volume: 8 Issue: 3, 197 - 212, 15.09.2021
https://doi.org/10.13069/jacodesmath.1000842

Abstract

Let $\Gamma=\Gamma(\mathbb{V},\mathbb{E})$ be a simple (i.e., multiple edges and loops and are not allowed), connected (i.e., there exists a path between every pair of vertices), and an undirected (i.e., all the edges are bidirectional) graph. Let $d_{\Gamma}(\varrho_{i},\varrho_{j})$ denotes the geodesic distance between two nodes $\varrho_{i},\varrho_{j} \in \mathbb{V}$. The problem of characterizing the classes of plane graphs with constant metric dimensions is of great interest nowadays. In this article, we characterize three classes of plane graphs (viz., $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$, and $\mathfrak{L}_{n}$) which are generated by taking n-copies of the complete bipartite graph (or a star) $K_{1,5}$, and all of these plane graphs are radially symmetrical with the constant metric dimension. We show that three vertices is a minimal requirement for the unique identification of all vertices of these three classes of plane graphs.

References

  • [1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak, L. S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006) 2168–2181.
  • [2] L. M. Blumenthal, Theory and applications of distance geometry, Oxford: At the Clarendon Press (Geoffrey Cumberlege) (1953).
  • [3] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hung. 46(1) (2003) 9-15.
  • [4] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood, On the metric dimension of some families of graphs, Electron. Notes Discret. Math. 22 (2005) 129–133.
  • [5] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113.
  • [6] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976) 191-195.
  • [7] I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008) 21-34.
  • [8] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217-229.
  • [9] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process. 25 (1984) 113-121.
  • [10] A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res. 29(2) (2004) 383–393.
  • [11] P. J. Slater, Leaves of trees, Congr. Numer 14 (1975) 549-559.
  • [12] I. Tomescu, M. Imran, Metric dimension and R-sets of a connected graph, Graphs Comb. 27 (2011) 585-591.
  • [13] I. Tomescu, I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie 50(98) (2007) 371-376.
Year 2021, Volume: 8 Issue: 3, 197 - 212, 15.09.2021
https://doi.org/10.13069/jacodesmath.1000842

Abstract

References

  • [1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak, L. S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006) 2168–2181.
  • [2] L. M. Blumenthal, Theory and applications of distance geometry, Oxford: At the Clarendon Press (Geoffrey Cumberlege) (1953).
  • [3] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hung. 46(1) (2003) 9-15.
  • [4] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood, On the metric dimension of some families of graphs, Electron. Notes Discret. Math. 22 (2005) 129–133.
  • [5] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113.
  • [6] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976) 191-195.
  • [7] I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 75 (2008) 21-34.
  • [8] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217-229.
  • [9] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process. 25 (1984) 113-121.
  • [10] A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res. 29(2) (2004) 383–393.
  • [11] P. J. Slater, Leaves of trees, Congr. Numer 14 (1975) 549-559.
  • [12] I. Tomescu, M. Imran, Metric dimension and R-sets of a connected graph, Graphs Comb. 27 (2011) 585-591.
  • [13] I. Tomescu, I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie 50(98) (2007) 371-376.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sunny Kumar Sharma This is me

Sunny Kumar Sharma This is me

Early Pub Date October 9, 2021
Publication Date September 15, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

APA Sharma, S. K., & Sharma, S. K. (2021). On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$. Journal of Algebra Combinatorics Discrete Structures and Applications, 8(3), 197-212. https://doi.org/10.13069/jacodesmath.1000842
AMA Sharma SK, Sharma SK. On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$. Journal of Algebra Combinatorics Discrete Structures and Applications. September 2021;8(3):197-212. doi:10.13069/jacodesmath.1000842
Chicago Sharma, Sunny Kumar, and Sunny Kumar Sharma. “On Metric Dimension of Plane Graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$”. Journal of Algebra Combinatorics Discrete Structures and Applications 8, no. 3 (September 2021): 197-212. https://doi.org/10.13069/jacodesmath.1000842.
EndNote Sharma SK, Sharma SK (September 1, 2021) On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$. Journal of Algebra Combinatorics Discrete Structures and Applications 8 3 197–212.
IEEE S. K. Sharma and S. K. Sharma, “On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 8, no. 3, pp. 197–212, 2021, doi: 10.13069/jacodesmath.1000842.
ISNAD Sharma, Sunny Kumar - Sharma, Sunny Kumar. “On Metric Dimension of Plane Graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$”. Journal of Algebra Combinatorics Discrete Structures and Applications 8/3 (September 2021), 197-212. https://doi.org/10.13069/jacodesmath.1000842.
JAMA Sharma SK, Sharma SK. On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$. Journal of Algebra Combinatorics Discrete Structures and Applications. 2021;8:197–212.
MLA Sharma, Sunny Kumar and Sunny Kumar Sharma. “On Metric Dimension of Plane Graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 8, no. 3, 2021, pp. 197-12, doi:10.13069/jacodesmath.1000842.
Vancouver Sharma SK, Sharma SK. On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$ and $\mathfrak{L}_{n}$. Journal of Algebra Combinatorics Discrete Structures and Applications. 2021;8(3):197-212.

Cited By





On hendecagonal circular ladder and its metric dimension
International Journal of Computer Mathematics: Computer Systems Theory
https://doi.org/10.1080/23799927.2024.2364650

On metric dimension of hendecagonal circular ladder $H_{n}$
Annals of the University of Craiova Mathematics and Computer Science Series
https://doi.org/10.52846/ami.v50i2.1722