Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Some Biological Activities of Yeast Derived Synbiotic (JD2+EPSJD2) and Postbiotic+Prebiotic (CFSJD2+EPSJD2) Applications

Yıl 2023, , 51 - 61, 31.03.2023
https://doi.org/10.35229/jaes.1211758

Öz

The biological potential of exopolysaccharide (EPS) depends on its chemical structure, which is affected by the fermentation conditions used in the cultivation of probiotic microorganisms. EPS produced by probiotic yeast has gained great importance in therapeutic applications such as antimicrobial, immunomodulatory, anti-inflammatory, antioxidant, anti-tumor, anti-viral, anti-diabetic, anti-ulcer, and cholesterol-lowering activities. In this study, it was aimed to conduct some biological activity (antioxidant and antibiofilm) studies of synbiotic (JD2+EPSJD2), postbiotic+prebiotic (CFSJD2+EPSJD2) applications obtained by using Pichia kudriavzevii yeast. To interpret the results obtained as effective/ineffective, commercial prebiotic inulin was used under the same conditions and the analysis results were compared. In biological activity studies determined by testing different concentrations, the highest antioxidant and antibiofilm capacity was identified in postbiotic+prebiotic (CFSJD2+EPSJD2) (86.6% and 84%, respectively) application, respectively, at 10 mg/L concentration. In addition, it was observed that the antioxidant activity (71.4%) and the capacity to prevent biofilm formation (68%)of inulin, which is used as a commercial prebiotic, were lower than the applications we used in our research.

Kaynakça

  • Aakef, J.N.A. (2018). Hurmadan izole edilen mayaların bazı probiyotik özelliklerin araştırılması. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Ensititüsü, Ankara. 118.
  • Aguilar-Toala, J.E, Hall, F.G., Urbizo-Reyes, U.C., Garcia, H.S., Vallejo-Cordoba, B., González- Córdova, A.F., Hernández-Mendoza, A. & Liceaga, A.M. (2019). In silico prediction & in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria. Probiotics & Antimicrobial Proteins, 12(2), 608- 622. DOI: 10.1007/s12602-019-09568-z.
  • Al-Shwyeh, A. (2019). Date palm (Phoenix dactylifera L.) fruit as potential antioxidant & antimicrobial agents. Journal of Pharmacy & Bioallied Sciences, 11(1), 1- 11. DOI: 10.4103/jpbs.JPBS_168_18.
  • Amaretti, A., Di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M. & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: In vitro & in vivo activities. Applied Microbial Biotechnology, 97(2), 809-817. DOI: 10.1007/s00253-012-4241-7.
  • Andresen, V., Gschossmann, J. & Layer, P. (2020). Heat- inactivated Bifidobacterium bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable bowel syndrome: a multicentre, r&omised, double-blind, placebo-controlled clinical trial. Lancet Gastroenterology Hepatology, 5(7), 658-666. DOI:10.1016/S2468-1253(20)30056-X.
  • Aponte, M., Murru. N. & Shoukat, M. (2020). Therapeutic, prophylactic, & functional use of probiotics: A current perspective. Frontiers in Microbiology, 11(562048), 1-16. DOI:10.3389/fmicb.2020.562048.
  • Ayaz, Z. (2021). Prebiyotikler ve sağlık açısından faydaları. The Journal of Turkish Family Physician, 12(4), 201-206. DOI: 10.15511/tjtfp.21.00493 Bajaj, B. K., Raina, S. & Signh, S. (2013). Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. Journal of Basic Microbiology, 53, 645-656. DOI:10.1002/jobm.201200187.
  • Banik, A., Halder, S., Ghosh, C. & Mondal, C. (2019). Fungal probiotics: Opportunity, challenge, & prospects. Recent Advancement in White Biotechnology through Fungi, 11235, 101-117. DOI: 10.1007/978-3-030-14846-1_3.
  • Banwo, K., Alonge, Z. & Sanni, A.I. (2021). Binding capacities & antioxidant activities of Lactobacillus plantarum & Pichia kudriavzevii against cadmium & lead toxicities. Biological Trace Element Research, 199(2), 779-791. DOI: 10.1007/s12011-020-02164-1.
  • Bekatorou, A., Psarianos, C. & Koutinas, A.A. (2006). Production of food grade yeast. Biotechnology, 44(3), 407-415. ISSN: 1330-9862.
  • Bikric, S., Aslim, B., Dincer, İ., Yuksekdag, Z., Ulusoy, S. & Yavuz, S. (2022). Characterization of exopolysaccharides (EPSs) obtained from Ligilactobacillus salivarius strains & investigation at the prebiotic potential as an alternative to plant prebiotics at poultry. Probiotics & Antimicrobial Proteins, 14, 49-59. DOI: 10.1007/s12602-021-09790-8.
  • Borman, A.M. & Johnson, E.M. (2021). New names for fungi of medical importance: Can we have our cake & eat it too? Journal of Clinical Microbiology, 59(3). DOI: 10.1128/JCM.02896-20.
  • Burkhardt, L. (2022). Eine enzyklopädie zu eponymischen pflanzennamen [Encyclopedia of eponymic plant names] (in German). Berlin: Botanic Garden & Botanical Museum, Freie Universität Berlin.
  • Castro-Bravo, N., Wells, J.M., Margolles, A. & Ruas- Madiedo, P. (2018). Interactions of surface exopolysaccharides from Bifidobacterium & Lactobacillus within the intestinal environment. Frontiers in Microbiology, 9, 2426. DOI:/10.3389/fmicb.2018.02426.
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K. & Bakhrouf, A. (2011). Antibacterial activity of thymoquinone, an active principle of nigella sativa & its potency to prevent bacterial biofilm formation. BMC Complementary & Alternative Medicine, 11 29. http://www.biomedcentral.com/1472- 6882/11/29.
  • Çiftçi, M. & Öncül, N. (2022). Ticari probiyotik içeceklerin bazı mikrobiyolojik özellikleri. Akademik Ziraat Dergisi, 11(1), 165-178. DOI: 10.29278/azd.1002242.
  • Das, D., Baruah, R. & Goyal, A. (2014). A food additive with prebiotic properties of an alpha-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules, 69, 20-26. DOI: 10.1016/j.ijbiomac.2014.05.029.
  • Datta, S., Timson, D.J. & Annapure, U.S. (2017). Antioxidant properties & global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food & Agriculture, 97(9), 3039-3049. DOI: 10.1002/jsfa.8147.
  • de Oliveira Coelho, B., Fiorda-Mello, F., de Melo Pereira, G., Thomaz-Soccol, V., Rakshit, S.K., de Carvalho, J.C. & Soccol1, C.R. (2019). In vitro probiotic properties & DNA protection activity of yeast & lactic acid bacteria isolated from a honey- based kefir beverage. Foods, 8(10), 485. DOI:10.3390/foods8100485.
  • Doğan, M. (2012). The effect mechanisms of probiotic bacteria in gastrointestinal system. Electronic Journal of Food Technologies, 7(1), 20-27. e- ISSN:1306-7648.
  • Douglass A.P., Offei B., Galleani, S.B., Coughlan, A.Y., Martos, A.A.R., Ortiz-Merino, R.A., Byrne K.P. & Wolfe, K.H. (2018). Population genomics shows no distinction between pathogenic C&ida krusei & environmental Pichia kudriavzevii: One species, four names. PLoS Pathogens, 14(7), e1007138. DOI: 10.1371/journal.ppat.1007138.
  • El-Ghawas, D.E., Elkhateeb, W.A, Akram, M. & Daba, G.M. (2021). Yeast as biotechnological tool in food industry. Journal of Pharmaceutical Sciences, 5(2), 1-6.
  • Elleuch, M., Besbes, S., Roiseux, O., Blecker, C., Deroanne, C., Drira, N. &Attia, H. (2008). Date flesh: Chemical composition & characteristics of the dietary fibre. Food Chemistry, 111(3), 676-682. DOI: 10.1016/j.foodchem.2008.04.036.
  • Fiore, C., Arrizon, J., Gschaedler A., Flores, J. & Romano, P. (2005). Comparison between yeasts from grape & agave musts for traits of technological interest. World Journal Microbiology Biotechnology, 21, 1141-1147. DOI: 10.1007/s11274-005-0196-5.
  • Gibson, G., Hutkins, R., Sanders, M., Prescott, S., Reimer, R. & Salminen, S. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition & scope of prebiotics (PDF). Nature Reviews. Gastroenterology & Hepatology, 14(8), 491-502. DOI: 10.1038/nrgastro.2017.75.
  • Gientka, I., Blazejak, S., Stasiak-Rozanska, L. & Chlebowska-Smigiel, A. (2015). Exopolysaccharides from yeast: Insight into optimal conditions for biosynthesis, chemical composition & functional properties. Acta Scientiarum Polonorum Technologia Alimentaria. 14(4), 283-292. DOI: 10.17306/J.AFS.2015.4.29.
  • Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. & Sanders, M.E. (2014). Expert consensus document: the international scientific association for probiotics & prebiotics consensus statement on the scope & appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514.
  • Homayouni, A., Azizi, A., Oroojzadeh, P. & Pourjafar, H. (2020). Kluyveromyces marxianus as a probiotic yeast: A mini-review. Current Nutrition & Food Science, 16(8), 1163-1169. DOI: 10.2174/1573401316666200217113230.
  • Humam, A.M., Loh, T.C., Foo, H.L., Izuddin, W.I., Zulkifli, I., Samsudin, A.A. & Mustapha, N.M. (2021). Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, & reduced cytokine, acute phase protein, & heat shock protein 70 gene expression levels in heat-stressed broilers. Poultry Science, 100(3), 100908. DOI: 10.1016/j.psj.2020.12.011.
  • Illanes, A. & Guerrero, C. (2016). Functional foods & feeds:Probiotics, prebiotics, & synbiotics. Lactose- Derived Prebiotics. A Process Perspective, 35-86. DOI: 10.1016/B978-0-12-802724-0.00002-0.
  • Kanmani, R., Dhivya, S., Jayalakshmi, S. & Vijayabaskar, P. (2011). Studies on detergent additives of protease enzyme from an estuarine bacterium Bacillus cereus. International Research Journal of Biotechnology, 27, 157-163.
  • Karaca, B., Haliscelik, O., Gursoy, M., Kiran, F., Loimaranta, V., Söderling, E. & Gursoy, U.K. (2022). Analysis of chemical structure & antibiofilm properties of exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1. Postbiotics. Microorganisms, 10, 2200. DOI: 10.3390/microorganisms10112200.
  • Kerry, R.G., Patra, J.K., Gouda, S., Park, Y., Shin, H.S., Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food & Drug Analysis, 26(3), 927-939. DOI: 10.1016/j.jfda.2018.01.002.
  • Kim, Y., Oh, S. & Kim, S.H. (2009). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochemical & Biophysical Research Communications, 379(2), 324-329. DOI: 10.1016/j.bbrc.2008.12.053.
  • Koohestani, M., Moradi, M., Tajik, H. & Badali, A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 & Lactobacillus casei 431 against planktonic form & biofilm of Staphylococcus aureus. Veterinary Research Forum, 9(4), 301-306. DOI: 10.30466/vrf.2018.33086.
  • Li, W., Ji, J., Chen, X., Jiang, M., Rui, X. & Dong, M. (2014). Structural elucidation & antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 102, 351-359. DOI: 10.1016/j.carbpol.2013.11.053.
  • Li, S., Huang, R.., Shah, N., Tao, X., Xiong, Y. & Wei, H. (2014). Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Science, 97(12), 7334 -7343.
  • Madigan, M., Bender, K., Buckley, D., Sattley, M. & Stahl, D. (2019). Brock Biology of Microorganisms, 15th Global Edition, 1064s.
  • Merchán, A.V., Benito, M.J., Galván, A.I. & Ruiz-Moyano Seco de Herrera, S. (2020). Identification & selection of yeast with functional properties for future application in soft paste cheese. Lebensmittel- Wissenschaft & Technologie (LWT), 124, 109173. DOI: 10.1016/j.lwt.2020.109173.
  • Moslehi-Jenebian, S., Pedersen, L.L. & Jespersen, L. (2010). Beneficial effects of probiotic & food borne yeasts on human health. Nutrients, 2(4), 449-73. DOI: 10.3390/nu2040449.
  • Nahar, S., Mizan, F.R., Ha, A.J.W. & Ha, S.D. (2018). Advances & future prospects of enzyme-based biofilm prevention approaches in the food industry. Comprehensive Reviews in Food Science & Food Safety, 17(6), 1484-1502. DOI: 10.1111/1541- 4337.12382.
  • Oberoi, H.S, Babbar, N., Sandhu, S.K., Dhaliwal, S.S., Kaur, U., Chadha, B.S. & Bhargav, V.K. (2012). Ethanol production from alkali-treated rice straw via simultaneous saccharification & fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. Journal of Industrial Microbiology & Biotechnology, 39(4), 557-556. DOI: 10.1007/s10295-011-1060-2.
  • Okan Bakır, B. (2011). Prebiyotik, probiyotik ve sinbiyotiklere genel bakış. Beslenme ve Diyet Dergisi, 40(2), 178-182.
  • Pandey, K.R., Naik, S.R. &Vakil, B.V. (2015). Probiotics, prebiotics & synbiotics- a review. Journal of Food Science & Technology, 52(12), 7577-7587. DOI: 10.1007/s13197-015-1921-1.
  • Rashad, M.M., Mahmoud, A.E., Abdou, H.M. & Nooman, M.U. (2011). Improvment of nutritional quality of yeast antioxidant activities of yeast fermented soybean curd resides. African Journal of Biotechnology, 10(28), 5504-5513. DOI: 10.5897/AJB10.1658.
  • Rengel dos Passos, F., Maestre, K.L., Florêncio da Silva, B., Rodrigues, A.C., Triques, C. C., Garcia, H.A., Fagundes-Klen, M.R., Antonio da Silva, E. & Fiorese, M.L. (2021). Production of a synbiotic composed of galacto-oligosaccharides &Saccharomyces boulardii using enzymatic- fermentative method. Food Chemistry, 353, 129486. DOI: 10.1016/j.foodchem.2021.129486.
  • Sadeghi, A., Ebrahimi, M., Shahryari, S., Kharazmi, M. & Jafari, S. (2022). Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends in Food Science and Technology, 128, 278-295.
  • Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M. , Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H. & Vinderola, G. (2021). The International Scientific Association of Probiotics & Prebiotics (ISAPP) consensus statement on the definition & scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649-667. DOI: 10.1038/s41575-021-00440-6.
  • Sandasi, M., Leonard, C.M. & Viljoen, A.M. (2010). The in vitro antibiofilm activity of selected culinary herbs & medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology, 50(1), 30-35. DOI: 10.1111/j.1472-765X.2009.02747.x.
  • Sarikaya, H., Aslim, B. & Yuksekdag, Z.N. (2017). Assessment of anti-biofilm activity & bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (L-EPSs) from Lactobacilli strains. International Journal of Food Properties, 20(2), 362-371. DOI: 10.1080/10942912.2016.1160923.
  • Shi, Y., Davis, K., Zhang, F., Duffy, C & Yu, X. (2014). Parameter estimation of a physically-based l&surface hydrologic model using the ensemble Kalman Filter: A synthetic experiment. Water Resources Research, 50, 706-724. DOI: 10.1002/2013WR014070.
  • Smith, I.M., Baker, A., Arneborg, N. & Jespersen, L. (2015). Non Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Applied Microbiology, 161(5), 491-7. DOI: 10.1111/lam.12481.
  • Soccol, C.R., Vandenberghe, L.P.S., Spier, M.R., Medeiros, A.B.P., Yamaguishi, C.T., Lindner, J.D.D., P&ey, A. & Thomaz-Soccol, V. (2010). The potential of probiotics. Food Technology & Biotechnology, 48(4), 413-434. ISSN 1330-9862.
  • Soliemani, O., Salimi, F. & Rezaei, A. (2022). Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 & evaluation of its anti-biofilm activity. Archives of Microbiology, Archives of Microbiology, 204, 419. DOI: 10.1007/s00203-022-02965-z.
  • Stinson, L.F., Payne, M.S. & Keelan, J.A. (2017). Planting the seed: origins, composition, & postnatal health significance of the fetal gastrointestinal microbiota. Critical Reviews in Microbiology, 43(3), 352-369. DOI: 10.1080/1040841X.2016.1211088.
  • Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M. & Sanders, M.E. (2020). The International Scientific Association for Probiotics & Prebiotics (ISAPP) consensus statement on the definition & scope of synbiotics. Nature Reviews Gastroenterology & Hepatology, 17, 687-701. DOI: 10.1038/s41575-020-0344-2.
  • Toushik, S.H., Mizan, F.R., Hossain, I. & Ha, S.D. (2020). Fighting with old foes: The pledge of microbe- derived biological agents to defeat mono-& mixed-bacterial biofilms concerning food industries. Trends in Food Science & Technology, 99, 413-425. DOI: 10.1016/j.tifs.2020.03.019.
  • Tufarelli, V. & Laudadio, V. (2016). An Overview on the functional food concept: prospectives & applied researches in probiotics, prebiotics & synbiotics. Journal of Experimental Biology & Agricultural Sciences. 4(3), 273-278. ISSN: 2320-8694.
  • Vargas-Ochoa, B., Mejía-Barajas, J., Clemente-Guerrero, M., Manzo-Avalos, S., Salgado-Garciglia, R. & Saavedra-Molina, A. (2016). Evaluation of antioxidant activity from different yeast extracts. Experimental Biology, 30(S1), 1174.22-1174.22. DOI: 10.1096/fasebj.30.1_supplement.1174.22.
  • Wang, J., Zhao, X., Yang, Y., Zhao, A. & Yang, Z. (2015). Characterization & bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules. 74, 119-126. DOI: 10.1016/j.ijbiomac.2014.12.006.
  • Wang, Z., Zhao, Y., Jiang, Y. & Chu, W. (2021). Prebiotic, antioxidant, and immunomodulatory properties of acidic exopolysaccharide from marine Rhodotorula RY1801. Frontiers in Nutrition, 8, 134-141. DOI: 10.3389/fnut.2021.710668.
  • Xu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Dia, V. P., Qiao, Y. & Shi, B. (2020). Antibacterial potential of a novel Lactobacillus casei strain isolated from Chinese northeast sauerkraut & the antibiofilm activity of its exopolysaccharides. Food & Function, 11, 4697-4706. DOI: 10.1039/D0FO00905A.
  • Yang, X., Li, L., Duan, Y. & Yang, X. (2017). Antioxidant activity of JM113 in vitro & its protective effect on broiler chickens challenged with deoxynivalenol. J. Anim. Sci., 95(2), 837-846. DOI: 10.2527/jas.2016.0789.
  • Yi, Y., Huang, W. & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology & Biotechnology, 24(7), 1061. DOI: 10.1007/s11274-007-9575-4.

Maya Kaynaklı Sinbiyotik (JD2+EPSJD2) ve Postbiyotik+Prebiyotik (CFSJD2+EPSJD2) Uygulamalarının Bazı Biyolojik Aktivitelerinin Belirlenmesi

Yıl 2023, , 51 - 61, 31.03.2023
https://doi.org/10.35229/jaes.1211758

Öz

Ekzopolisakkaritin (EPS) biyolojik potansiyeli, probiyotik mikroorganizmaların yetiştirilmesinde kullanılan fermantasyon koşullarından etkilenen kimyasal yapısına bağlıdır. Probiyotik maya tarafından üretilen EPS, antimikrobiyal, immünomodülatör, anti-inflamatuar, antioksidan, anti-tümör, anti-viral, anti-diyabetik, anti-ülser ve kolesterol düşürücü aktiviteler gibi terapötik uygulamalarda çok önem kazanmıştır. Bu çalışmada, Pichia kudriavzevii mayası kullanılarak elde edilen sinbiyotik (JD2+EPSJD2), postbiyotik+prebiyotik (CFSJD2+EPSJD2) uygulamalarının bazı biyolojik aktivite (antioksidan ve antibiyofilm) çalışmalarının yapılması amaçlanmıştır. Elde edilen sonuçların etkili/etkisiz olduğunu yorumlayabilmek için aynı koşullarda ticari prebiyotik olarak satılan inülin kullanılmış ve analiz sonuçları karşılaştırılmıştır. Farklı konsantrasyonlar denenerek belirlenen biyolojik aktivite çalışmalarında 10 mg/L derişimde sırasıyla en yüksek antioksidan ve antibiyofilm kapasite postbiyotik+prebiyotik (CFSJD2+EPSJD2) (%86,6 ve %84, sırasıyla) uygulamasında tespit edilmiştir. Ayrıca, ticari prebiyotik olarak kullanılan inülinin antioksidan aktivitesinin (%71,4) ve biyofilm oluşumunu engelleme (%68) kapasitesinin araştırmamızda kullandığımız uygulamalardan daha düşük değerde olduğu gözlenmiştir.

Kaynakça

  • Aakef, J.N.A. (2018). Hurmadan izole edilen mayaların bazı probiyotik özelliklerin araştırılması. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Ensititüsü, Ankara. 118.
  • Aguilar-Toala, J.E, Hall, F.G., Urbizo-Reyes, U.C., Garcia, H.S., Vallejo-Cordoba, B., González- Córdova, A.F., Hernández-Mendoza, A. & Liceaga, A.M. (2019). In silico prediction & in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria. Probiotics & Antimicrobial Proteins, 12(2), 608- 622. DOI: 10.1007/s12602-019-09568-z.
  • Al-Shwyeh, A. (2019). Date palm (Phoenix dactylifera L.) fruit as potential antioxidant & antimicrobial agents. Journal of Pharmacy & Bioallied Sciences, 11(1), 1- 11. DOI: 10.4103/jpbs.JPBS_168_18.
  • Amaretti, A., Di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M. & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: In vitro & in vivo activities. Applied Microbial Biotechnology, 97(2), 809-817. DOI: 10.1007/s00253-012-4241-7.
  • Andresen, V., Gschossmann, J. & Layer, P. (2020). Heat- inactivated Bifidobacterium bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable bowel syndrome: a multicentre, r&omised, double-blind, placebo-controlled clinical trial. Lancet Gastroenterology Hepatology, 5(7), 658-666. DOI:10.1016/S2468-1253(20)30056-X.
  • Aponte, M., Murru. N. & Shoukat, M. (2020). Therapeutic, prophylactic, & functional use of probiotics: A current perspective. Frontiers in Microbiology, 11(562048), 1-16. DOI:10.3389/fmicb.2020.562048.
  • Ayaz, Z. (2021). Prebiyotikler ve sağlık açısından faydaları. The Journal of Turkish Family Physician, 12(4), 201-206. DOI: 10.15511/tjtfp.21.00493 Bajaj, B. K., Raina, S. & Signh, S. (2013). Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. Journal of Basic Microbiology, 53, 645-656. DOI:10.1002/jobm.201200187.
  • Banik, A., Halder, S., Ghosh, C. & Mondal, C. (2019). Fungal probiotics: Opportunity, challenge, & prospects. Recent Advancement in White Biotechnology through Fungi, 11235, 101-117. DOI: 10.1007/978-3-030-14846-1_3.
  • Banwo, K., Alonge, Z. & Sanni, A.I. (2021). Binding capacities & antioxidant activities of Lactobacillus plantarum & Pichia kudriavzevii against cadmium & lead toxicities. Biological Trace Element Research, 199(2), 779-791. DOI: 10.1007/s12011-020-02164-1.
  • Bekatorou, A., Psarianos, C. & Koutinas, A.A. (2006). Production of food grade yeast. Biotechnology, 44(3), 407-415. ISSN: 1330-9862.
  • Bikric, S., Aslim, B., Dincer, İ., Yuksekdag, Z., Ulusoy, S. & Yavuz, S. (2022). Characterization of exopolysaccharides (EPSs) obtained from Ligilactobacillus salivarius strains & investigation at the prebiotic potential as an alternative to plant prebiotics at poultry. Probiotics & Antimicrobial Proteins, 14, 49-59. DOI: 10.1007/s12602-021-09790-8.
  • Borman, A.M. & Johnson, E.M. (2021). New names for fungi of medical importance: Can we have our cake & eat it too? Journal of Clinical Microbiology, 59(3). DOI: 10.1128/JCM.02896-20.
  • Burkhardt, L. (2022). Eine enzyklopädie zu eponymischen pflanzennamen [Encyclopedia of eponymic plant names] (in German). Berlin: Botanic Garden & Botanical Museum, Freie Universität Berlin.
  • Castro-Bravo, N., Wells, J.M., Margolles, A. & Ruas- Madiedo, P. (2018). Interactions of surface exopolysaccharides from Bifidobacterium & Lactobacillus within the intestinal environment. Frontiers in Microbiology, 9, 2426. DOI:/10.3389/fmicb.2018.02426.
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K. & Bakhrouf, A. (2011). Antibacterial activity of thymoquinone, an active principle of nigella sativa & its potency to prevent bacterial biofilm formation. BMC Complementary & Alternative Medicine, 11 29. http://www.biomedcentral.com/1472- 6882/11/29.
  • Çiftçi, M. & Öncül, N. (2022). Ticari probiyotik içeceklerin bazı mikrobiyolojik özellikleri. Akademik Ziraat Dergisi, 11(1), 165-178. DOI: 10.29278/azd.1002242.
  • Das, D., Baruah, R. & Goyal, A. (2014). A food additive with prebiotic properties of an alpha-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules, 69, 20-26. DOI: 10.1016/j.ijbiomac.2014.05.029.
  • Datta, S., Timson, D.J. & Annapure, U.S. (2017). Antioxidant properties & global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food & Agriculture, 97(9), 3039-3049. DOI: 10.1002/jsfa.8147.
  • de Oliveira Coelho, B., Fiorda-Mello, F., de Melo Pereira, G., Thomaz-Soccol, V., Rakshit, S.K., de Carvalho, J.C. & Soccol1, C.R. (2019). In vitro probiotic properties & DNA protection activity of yeast & lactic acid bacteria isolated from a honey- based kefir beverage. Foods, 8(10), 485. DOI:10.3390/foods8100485.
  • Doğan, M. (2012). The effect mechanisms of probiotic bacteria in gastrointestinal system. Electronic Journal of Food Technologies, 7(1), 20-27. e- ISSN:1306-7648.
  • Douglass A.P., Offei B., Galleani, S.B., Coughlan, A.Y., Martos, A.A.R., Ortiz-Merino, R.A., Byrne K.P. & Wolfe, K.H. (2018). Population genomics shows no distinction between pathogenic C&ida krusei & environmental Pichia kudriavzevii: One species, four names. PLoS Pathogens, 14(7), e1007138. DOI: 10.1371/journal.ppat.1007138.
  • El-Ghawas, D.E., Elkhateeb, W.A, Akram, M. & Daba, G.M. (2021). Yeast as biotechnological tool in food industry. Journal of Pharmaceutical Sciences, 5(2), 1-6.
  • Elleuch, M., Besbes, S., Roiseux, O., Blecker, C., Deroanne, C., Drira, N. &Attia, H. (2008). Date flesh: Chemical composition & characteristics of the dietary fibre. Food Chemistry, 111(3), 676-682. DOI: 10.1016/j.foodchem.2008.04.036.
  • Fiore, C., Arrizon, J., Gschaedler A., Flores, J. & Romano, P. (2005). Comparison between yeasts from grape & agave musts for traits of technological interest. World Journal Microbiology Biotechnology, 21, 1141-1147. DOI: 10.1007/s11274-005-0196-5.
  • Gibson, G., Hutkins, R., Sanders, M., Prescott, S., Reimer, R. & Salminen, S. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition & scope of prebiotics (PDF). Nature Reviews. Gastroenterology & Hepatology, 14(8), 491-502. DOI: 10.1038/nrgastro.2017.75.
  • Gientka, I., Blazejak, S., Stasiak-Rozanska, L. & Chlebowska-Smigiel, A. (2015). Exopolysaccharides from yeast: Insight into optimal conditions for biosynthesis, chemical composition & functional properties. Acta Scientiarum Polonorum Technologia Alimentaria. 14(4), 283-292. DOI: 10.17306/J.AFS.2015.4.29.
  • Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C. & Sanders, M.E. (2014). Expert consensus document: the international scientific association for probiotics & prebiotics consensus statement on the scope & appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514.
  • Homayouni, A., Azizi, A., Oroojzadeh, P. & Pourjafar, H. (2020). Kluyveromyces marxianus as a probiotic yeast: A mini-review. Current Nutrition & Food Science, 16(8), 1163-1169. DOI: 10.2174/1573401316666200217113230.
  • Humam, A.M., Loh, T.C., Foo, H.L., Izuddin, W.I., Zulkifli, I., Samsudin, A.A. & Mustapha, N.M. (2021). Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, & reduced cytokine, acute phase protein, & heat shock protein 70 gene expression levels in heat-stressed broilers. Poultry Science, 100(3), 100908. DOI: 10.1016/j.psj.2020.12.011.
  • Illanes, A. & Guerrero, C. (2016). Functional foods & feeds:Probiotics, prebiotics, & synbiotics. Lactose- Derived Prebiotics. A Process Perspective, 35-86. DOI: 10.1016/B978-0-12-802724-0.00002-0.
  • Kanmani, R., Dhivya, S., Jayalakshmi, S. & Vijayabaskar, P. (2011). Studies on detergent additives of protease enzyme from an estuarine bacterium Bacillus cereus. International Research Journal of Biotechnology, 27, 157-163.
  • Karaca, B., Haliscelik, O., Gursoy, M., Kiran, F., Loimaranta, V., Söderling, E. & Gursoy, U.K. (2022). Analysis of chemical structure & antibiofilm properties of exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1. Postbiotics. Microorganisms, 10, 2200. DOI: 10.3390/microorganisms10112200.
  • Kerry, R.G., Patra, J.K., Gouda, S., Park, Y., Shin, H.S., Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food & Drug Analysis, 26(3), 927-939. DOI: 10.1016/j.jfda.2018.01.002.
  • Kim, Y., Oh, S. & Kim, S.H. (2009). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochemical & Biophysical Research Communications, 379(2), 324-329. DOI: 10.1016/j.bbrc.2008.12.053.
  • Koohestani, M., Moradi, M., Tajik, H. & Badali, A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 & Lactobacillus casei 431 against planktonic form & biofilm of Staphylococcus aureus. Veterinary Research Forum, 9(4), 301-306. DOI: 10.30466/vrf.2018.33086.
  • Li, W., Ji, J., Chen, X., Jiang, M., Rui, X. & Dong, M. (2014). Structural elucidation & antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 102, 351-359. DOI: 10.1016/j.carbpol.2013.11.053.
  • Li, S., Huang, R.., Shah, N., Tao, X., Xiong, Y. & Wei, H. (2014). Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Science, 97(12), 7334 -7343.
  • Madigan, M., Bender, K., Buckley, D., Sattley, M. & Stahl, D. (2019). Brock Biology of Microorganisms, 15th Global Edition, 1064s.
  • Merchán, A.V., Benito, M.J., Galván, A.I. & Ruiz-Moyano Seco de Herrera, S. (2020). Identification & selection of yeast with functional properties for future application in soft paste cheese. Lebensmittel- Wissenschaft & Technologie (LWT), 124, 109173. DOI: 10.1016/j.lwt.2020.109173.
  • Moslehi-Jenebian, S., Pedersen, L.L. & Jespersen, L. (2010). Beneficial effects of probiotic & food borne yeasts on human health. Nutrients, 2(4), 449-73. DOI: 10.3390/nu2040449.
  • Nahar, S., Mizan, F.R., Ha, A.J.W. & Ha, S.D. (2018). Advances & future prospects of enzyme-based biofilm prevention approaches in the food industry. Comprehensive Reviews in Food Science & Food Safety, 17(6), 1484-1502. DOI: 10.1111/1541- 4337.12382.
  • Oberoi, H.S, Babbar, N., Sandhu, S.K., Dhaliwal, S.S., Kaur, U., Chadha, B.S. & Bhargav, V.K. (2012). Ethanol production from alkali-treated rice straw via simultaneous saccharification & fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. Journal of Industrial Microbiology & Biotechnology, 39(4), 557-556. DOI: 10.1007/s10295-011-1060-2.
  • Okan Bakır, B. (2011). Prebiyotik, probiyotik ve sinbiyotiklere genel bakış. Beslenme ve Diyet Dergisi, 40(2), 178-182.
  • Pandey, K.R., Naik, S.R. &Vakil, B.V. (2015). Probiotics, prebiotics & synbiotics- a review. Journal of Food Science & Technology, 52(12), 7577-7587. DOI: 10.1007/s13197-015-1921-1.
  • Rashad, M.M., Mahmoud, A.E., Abdou, H.M. & Nooman, M.U. (2011). Improvment of nutritional quality of yeast antioxidant activities of yeast fermented soybean curd resides. African Journal of Biotechnology, 10(28), 5504-5513. DOI: 10.5897/AJB10.1658.
  • Rengel dos Passos, F., Maestre, K.L., Florêncio da Silva, B., Rodrigues, A.C., Triques, C. C., Garcia, H.A., Fagundes-Klen, M.R., Antonio da Silva, E. & Fiorese, M.L. (2021). Production of a synbiotic composed of galacto-oligosaccharides &Saccharomyces boulardii using enzymatic- fermentative method. Food Chemistry, 353, 129486. DOI: 10.1016/j.foodchem.2021.129486.
  • Sadeghi, A., Ebrahimi, M., Shahryari, S., Kharazmi, M. & Jafari, S. (2022). Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends in Food Science and Technology, 128, 278-295.
  • Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M. , Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H. & Vinderola, G. (2021). The International Scientific Association of Probiotics & Prebiotics (ISAPP) consensus statement on the definition & scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649-667. DOI: 10.1038/s41575-021-00440-6.
  • Sandasi, M., Leonard, C.M. & Viljoen, A.M. (2010). The in vitro antibiofilm activity of selected culinary herbs & medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology, 50(1), 30-35. DOI: 10.1111/j.1472-765X.2009.02747.x.
  • Sarikaya, H., Aslim, B. & Yuksekdag, Z.N. (2017). Assessment of anti-biofilm activity & bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (L-EPSs) from Lactobacilli strains. International Journal of Food Properties, 20(2), 362-371. DOI: 10.1080/10942912.2016.1160923.
  • Shi, Y., Davis, K., Zhang, F., Duffy, C & Yu, X. (2014). Parameter estimation of a physically-based l&surface hydrologic model using the ensemble Kalman Filter: A synthetic experiment. Water Resources Research, 50, 706-724. DOI: 10.1002/2013WR014070.
  • Smith, I.M., Baker, A., Arneborg, N. & Jespersen, L. (2015). Non Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Applied Microbiology, 161(5), 491-7. DOI: 10.1111/lam.12481.
  • Soccol, C.R., Vandenberghe, L.P.S., Spier, M.R., Medeiros, A.B.P., Yamaguishi, C.T., Lindner, J.D.D., P&ey, A. & Thomaz-Soccol, V. (2010). The potential of probiotics. Food Technology & Biotechnology, 48(4), 413-434. ISSN 1330-9862.
  • Soliemani, O., Salimi, F. & Rezaei, A. (2022). Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 & evaluation of its anti-biofilm activity. Archives of Microbiology, Archives of Microbiology, 204, 419. DOI: 10.1007/s00203-022-02965-z.
  • Stinson, L.F., Payne, M.S. & Keelan, J.A. (2017). Planting the seed: origins, composition, & postnatal health significance of the fetal gastrointestinal microbiota. Critical Reviews in Microbiology, 43(3), 352-369. DOI: 10.1080/1040841X.2016.1211088.
  • Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M. & Sanders, M.E. (2020). The International Scientific Association for Probiotics & Prebiotics (ISAPP) consensus statement on the definition & scope of synbiotics. Nature Reviews Gastroenterology & Hepatology, 17, 687-701. DOI: 10.1038/s41575-020-0344-2.
  • Toushik, S.H., Mizan, F.R., Hossain, I. & Ha, S.D. (2020). Fighting with old foes: The pledge of microbe- derived biological agents to defeat mono-& mixed-bacterial biofilms concerning food industries. Trends in Food Science & Technology, 99, 413-425. DOI: 10.1016/j.tifs.2020.03.019.
  • Tufarelli, V. & Laudadio, V. (2016). An Overview on the functional food concept: prospectives & applied researches in probiotics, prebiotics & synbiotics. Journal of Experimental Biology & Agricultural Sciences. 4(3), 273-278. ISSN: 2320-8694.
  • Vargas-Ochoa, B., Mejía-Barajas, J., Clemente-Guerrero, M., Manzo-Avalos, S., Salgado-Garciglia, R. & Saavedra-Molina, A. (2016). Evaluation of antioxidant activity from different yeast extracts. Experimental Biology, 30(S1), 1174.22-1174.22. DOI: 10.1096/fasebj.30.1_supplement.1174.22.
  • Wang, J., Zhao, X., Yang, Y., Zhao, A. & Yang, Z. (2015). Characterization & bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules. 74, 119-126. DOI: 10.1016/j.ijbiomac.2014.12.006.
  • Wang, Z., Zhao, Y., Jiang, Y. & Chu, W. (2021). Prebiotic, antioxidant, and immunomodulatory properties of acidic exopolysaccharide from marine Rhodotorula RY1801. Frontiers in Nutrition, 8, 134-141. DOI: 10.3389/fnut.2021.710668.
  • Xu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Dia, V. P., Qiao, Y. & Shi, B. (2020). Antibacterial potential of a novel Lactobacillus casei strain isolated from Chinese northeast sauerkraut & the antibiofilm activity of its exopolysaccharides. Food & Function, 11, 4697-4706. DOI: 10.1039/D0FO00905A.
  • Yang, X., Li, L., Duan, Y. & Yang, X. (2017). Antioxidant activity of JM113 in vitro & its protective effect on broiler chickens challenged with deoxynivalenol. J. Anim. Sci., 95(2), 837-846. DOI: 10.2527/jas.2016.0789.
  • Yi, Y., Huang, W. & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology & Biotechnology, 24(7), 1061. DOI: 10.1007/s11274-007-9575-4.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Jaafar Nozad Aakef Aakef 0000-0002-2156-2868

Zehranur Yuksekdag 0000-0002-0381-5876

Yayımlanma Tarihi 31 Mart 2023
Gönderilme Tarihi 29 Kasım 2022
Kabul Tarihi 13 Şubat 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aakef, J. N. A., & Yuksekdag, Z. (2023). Maya Kaynaklı Sinbiyotik (JD2+EPSJD2) ve Postbiyotik+Prebiyotik (CFSJD2+EPSJD2) Uygulamalarının Bazı Biyolojik Aktivitelerinin Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 8(1), 51-61. https://doi.org/10.35229/jaes.1211758


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS