Çeşitli Kimyasal Reaktifler Kullanılarak Koyun Gübresinden Süper Aktif Karbon Üretimi
Yıl 2023,
, 402 - 410, 30.09.2023
Mehmet Fatih Dilekoğlu
,
Mazlum Yapici
Öz
Yüksek yüzey alanına sahip aktif karbon elde etmek amacıyla, koyun gübresinin çinko klorür (ZnCl2), potasyum hidroksit(KOH) ve fosforik asit (H3PO4) kimyasal ajanı kullanılarak kimyasal ve fiziksel aktivasyonu uygulanmıştır. Ham materyalin farklı partikül boyutları(-900+550, -550+350 ve -350+250 m), kimyasal aktivasyon ajanının farklı emdirme oranlarında(1/1, 2/1, 3/1 ve 4/1), farklı karbonizasyon sıcaklığı (400-900 oC), ve karbonizasyon süresi gibi aktivasyon parametrelerinin nihai ürünlerin özellikleri üzerindeki etkisi araştırılmıştır. Üretilen aktif karbonlar 77 K'de azot adsorpsiyon izotermleri ile karakterize edilmiştir. 3/1 emprenye oranında ZnCl2 kullanılarak 400 oC de karbonizasyon sıcaklığı ve 45 dakika karbonizasyon süresi ile elde edilen süper aktif karbonun yüzey alanı 2170 m2/g olarak ölçülmüştür. Bu aktif karbonun SEM, FTIR analizleri yardımıyla yüzey morfolojisi ve karakterizasyonu yapılmıştır.
Destekleyen Kurum
Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Teşekkür
Bu çalışmanın yapılmasında verdiği destekten dolayı Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür ederiz.
Kaynakça
- Abu Al-Rub, F.A., Kandah, M. & Al-Dabaybeh, N.
(2003). Competitive adsorption of nickel and
cadmium on sheep manure wastes: experimental
and prediction studies. Separation Science and
Technology, 38(2), 483-497.
- Awasthi, M.K., Duan, Y., Awasthi, S.K., Liu, T., Zhang,
Z., Kim, S. H. & Pandey, A. (2020). Effect of
biochar on emission, maturity and bacterial
dynamics during sheep manure compositing.
Renewable Energy, 152, 421-429.
- Aydin Şamdan, C. (2013). Kabak çekirdeği kabuğundan
kimyasal aktivasyonla aktif karbon üretimi. Boya
ve ağır metal gideriminde değerlendirilmesi.
Yüksek Lisans Tezi, Eskişehir Osmangazi
Üniversitesi, Fen Bilimleri Enstitüsü, 174s.
- Balçık, E. Ü., Torun, M., & Nadeem, H. Ş. (2020). Gıda
Atıklarından Aktif Karbon Üretimi ve Aktif
Karbonun Gıda Endüstrisinde Uygulamaları.
Gıda, 45(2), 217-229.
- Boostani, H.R., Najafi-Ghiri, M., Hardie, A.G. &
Khalili, D. (2019). Comparison of Pb
stabilization in a contaminated calcareous soil by
application of vermicompost and sheep manure
and their biochars produced at two temperatures.
Applied Geochemistry, 102, 121-128.
- Cha, J.S., Park, S.H., Jung, S.C., Ryu, C., Jeon, J.K.,
Shin, M.C. & Park, Y.K. (2016). Production and
utilization of biochar: A review. Journal of
Industrial & Engineering Chemistry, 40, 1-15.
- Danish, M. & Ahmad, T. (2018). A review on utilization
of wood biomass as a sustainable precursor for
activated carbon production and application.
Renewable and Sustainable Energy Reviews, 87,
1-21.
- Demirbaş, E., Kobya, M., Öncel, S. & Şencan, S. (2002).
Removal of Ni (II) from aqueous solution by
adsorption onto hazelnut shell activated carbon:
equilibrium studies. Bioresource Technology,
84(3), 291-293.
- Demirtaş, E.I., Nuri, AR.I., Arpacıoğlu, A., Harun,
K.A.Y.A. & Özkan, C.F. (2005). Değişik
organik kökenli gübrelerin kimyasal özellikleri.
Derim, 22(2), 47-52.
- Dilekoglu, M.F. & Yapici, M. (2023). Adsorption of
naproxen pharmaceutical micropollutant from
aqueous solutions on superior activated carbon
synthesized from sheep manure: Kinetics,
thermodynamics, and mechanism. Journal of
Molecular Liquids, 381, 121839.
- Iupac. (1985). IUPAC recommendations. Pure Appl.
Chem, 57, 603-619.
- Kandah, M. (2001). Zinc adsorption from aqueous
solutions using disposal sheep manure waste
(SMW). Chemical Engineering Journal, 84(3),
543-549.
- Karacan, F., Ozden, U. & Karacan, S. (2007).
Optimization of manufacturing conditions for
activated carbon from Turkish lignite by chemical
activation using response surface methodology.
Applied Thermal Engineering, 27(7), 1212-1218.
- Karapınar, H.S. (2018). Yenidünya (Erıobotrya
Japonıca) Çekirdeğinden Aktif Karbon Üretimi ve
Özelliklerinin İncelenmesi. Doktora Tezi,
Karamanoğlu Mehmetbey Üniversitesi, Fen
Bilimleri Enstitüsü, 196 s.
- Kwiatkowski, J.F. (2011). Activated carbon:
classifications, properties and applications. Nova
Science Publishers, Incorporated.
- Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman,
J. & Euverink, G.J.W. (2020). Co-digestion of
cow and sheep manure: Performance evaluation
and relative microbial activity. Renewable
Energy, 153, 553-563.
- Lillo-Ródenas, M.A., Marco-Lozar, J.P., CazorlaAmorós, D. & Linares-Solano, A. (2007).
Activated carbons prepared by pyrolysis of
mixtures of carbon precursor/alkaline hydroxide.
Journal of Analytical And Applied Pyrolysis,
80(1), 166-174.
- Liu, Q.S., Zheng, T., Wang, P. & Guo, L. (2010).
Preparation and characterization of activated
carbon from bamboo by microwave-induced
phosphoric acid activation. Industrial Crops And
Products, 31(2), 233-238.
- López-Cano, I., Roig, A., Cayuela, M.L.,
Alburquerque, J.A. & Sánchez-Monedero,
M.A. (2016). Biochar improves N cycling during
composting of olive mill wastes and sheep
manure. Waste Management, 49, 553-559.
- Lu, Q., Wang, Z., Dong, C.Q., Zhang, Z.F., Zhang, Y.,
Yang, Y.P. & Zhu, X.F. (2011). Selective fast
pyrolysis of biomass impregnated with ZnCl2:
Furfural production together with acetic acid and
activated carbon as by-products. Journal of
Analytical And Applied Pyrolysis, 91(1), 273-279.
- Lua, A.C. & Yang, T. (2004). Effect of activation
temperature on the textural and chemical
properties of potassium hydroxide activated
carbon prepared from pistachio-nut shell. Journal
of Colloid And Interface Science, 274(2), 594-
601.
- Malik, R., Ramteke, D.S. & Wate, S.R. (2007).
Adsorption of malachite green on groundnut shell
waste based powdered activated carbon. Waste
Management, 27(9), 1129-1138.
- Matos, J., Nahas, C., Rojas, L. & Rosales, M. (2011).
Synthesis and characterization of activated carbon
from sawdust of Algarroba wood. 1. Physical
activation and pyrolysis. Journal of Hazardous
Materials, 196, 360-369.
- Qian, Q., Machida, M. & Tatsumoto, H. (2007).
Preparation of activated carbons from cattlemanure compost by zinc chloride activation.
Bioresource Technology, 98(2), 353-360.
- Şahin, Ö., Saka, C., Ceyhan, A.A. & Baytar, O. (2016).
The pyrolysis process of biomass by two-stage
chemical activation with different methodology
and iodine adsorption. Energy Sources, Part A:
Recovery, Utilization, And Environmental Effects,
38(12), 1756-1762.
- Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W.,
... & Zhao, R. (2010). Preparation of activated
carbon from cattail and its application for dyes
removal. Journal of Environmental Sciences,
22(1), 91-97.
- Teng, H., Lin, Y.C. & Hsu, L.Y. (2000). Production of
activated carbons from pyrolysis of waste tires
impregnated with potassium hydroxide. Journal
of the Air & Waste Management Association,
50(11), 1940-1946.
- Yahya, M.A., Al-Qodah, Z. & Ngah, C.Z. (2015).
Agricultural bio-waste materials as potential
sustainable precursors used for activated carbon
production: A review. Renewable & Sustainable
Energy Reviews, 46, 218-235.
- Zhang, C., Zhu, X., Cao, M., Li, M., Li, N., Lai, L., ... &
Wei, D. (2016). Hierarchical Porous Carbon
Materials Derived from Sheep Manure for High‐
Capacity Supercapacitors. ChemSusChem, 9(9),
932-937.
Production of Super Activated Carbon from Sheep Manure Using Various Chemical Reagents
Yıl 2023,
, 402 - 410, 30.09.2023
Mehmet Fatih Dilekoğlu
,
Mazlum Yapici
Öz
In order to obtain activated carbon with a high surface area, chemical and physical activation was applied to sheep manure using the chemical agent zinc chloride (ZnCl2), potassium hydroxide (KOH) and phosphoric acid (H3PO4). The effect of activation parameters such as different particle sizes of the raw material (-900+550, -550+350 and -350+250 m), different impregnation rates of the chemical activation agent (1/1, 2/1, 3/1 and 4/1), different carbonization temperature (400-900 oC), and carbonization time on the properties of the final products was investigated. The activated carbons produced are characterized by nitrogen adsorption isotherms at 77 K. Using ZnCl2 at an impregnation ratio of 3/1, the surface area of the superactivated carbon obtained with a carbonization temperature at 400 oC and a carbonization time of 45 minutes was measured as 2170 m2/g. Surface morphology and characterization of this activated carbon were performed with the help of SEM, FTIR analyzes.
Kaynakça
- Abu Al-Rub, F.A., Kandah, M. & Al-Dabaybeh, N.
(2003). Competitive adsorption of nickel and
cadmium on sheep manure wastes: experimental
and prediction studies. Separation Science and
Technology, 38(2), 483-497.
- Awasthi, M.K., Duan, Y., Awasthi, S.K., Liu, T., Zhang,
Z., Kim, S. H. & Pandey, A. (2020). Effect of
biochar on emission, maturity and bacterial
dynamics during sheep manure compositing.
Renewable Energy, 152, 421-429.
- Aydin Şamdan, C. (2013). Kabak çekirdeği kabuğundan
kimyasal aktivasyonla aktif karbon üretimi. Boya
ve ağır metal gideriminde değerlendirilmesi.
Yüksek Lisans Tezi, Eskişehir Osmangazi
Üniversitesi, Fen Bilimleri Enstitüsü, 174s.
- Balçık, E. Ü., Torun, M., & Nadeem, H. Ş. (2020). Gıda
Atıklarından Aktif Karbon Üretimi ve Aktif
Karbonun Gıda Endüstrisinde Uygulamaları.
Gıda, 45(2), 217-229.
- Boostani, H.R., Najafi-Ghiri, M., Hardie, A.G. &
Khalili, D. (2019). Comparison of Pb
stabilization in a contaminated calcareous soil by
application of vermicompost and sheep manure
and their biochars produced at two temperatures.
Applied Geochemistry, 102, 121-128.
- Cha, J.S., Park, S.H., Jung, S.C., Ryu, C., Jeon, J.K.,
Shin, M.C. & Park, Y.K. (2016). Production and
utilization of biochar: A review. Journal of
Industrial & Engineering Chemistry, 40, 1-15.
- Danish, M. & Ahmad, T. (2018). A review on utilization
of wood biomass as a sustainable precursor for
activated carbon production and application.
Renewable and Sustainable Energy Reviews, 87,
1-21.
- Demirbaş, E., Kobya, M., Öncel, S. & Şencan, S. (2002).
Removal of Ni (II) from aqueous solution by
adsorption onto hazelnut shell activated carbon:
equilibrium studies. Bioresource Technology,
84(3), 291-293.
- Demirtaş, E.I., Nuri, AR.I., Arpacıoğlu, A., Harun,
K.A.Y.A. & Özkan, C.F. (2005). Değişik
organik kökenli gübrelerin kimyasal özellikleri.
Derim, 22(2), 47-52.
- Dilekoglu, M.F. & Yapici, M. (2023). Adsorption of
naproxen pharmaceutical micropollutant from
aqueous solutions on superior activated carbon
synthesized from sheep manure: Kinetics,
thermodynamics, and mechanism. Journal of
Molecular Liquids, 381, 121839.
- Iupac. (1985). IUPAC recommendations. Pure Appl.
Chem, 57, 603-619.
- Kandah, M. (2001). Zinc adsorption from aqueous
solutions using disposal sheep manure waste
(SMW). Chemical Engineering Journal, 84(3),
543-549.
- Karacan, F., Ozden, U. & Karacan, S. (2007).
Optimization of manufacturing conditions for
activated carbon from Turkish lignite by chemical
activation using response surface methodology.
Applied Thermal Engineering, 27(7), 1212-1218.
- Karapınar, H.S. (2018). Yenidünya (Erıobotrya
Japonıca) Çekirdeğinden Aktif Karbon Üretimi ve
Özelliklerinin İncelenmesi. Doktora Tezi,
Karamanoğlu Mehmetbey Üniversitesi, Fen
Bilimleri Enstitüsü, 196 s.
- Kwiatkowski, J.F. (2011). Activated carbon:
classifications, properties and applications. Nova
Science Publishers, Incorporated.
- Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman,
J. & Euverink, G.J.W. (2020). Co-digestion of
cow and sheep manure: Performance evaluation
and relative microbial activity. Renewable
Energy, 153, 553-563.
- Lillo-Ródenas, M.A., Marco-Lozar, J.P., CazorlaAmorós, D. & Linares-Solano, A. (2007).
Activated carbons prepared by pyrolysis of
mixtures of carbon precursor/alkaline hydroxide.
Journal of Analytical And Applied Pyrolysis,
80(1), 166-174.
- Liu, Q.S., Zheng, T., Wang, P. & Guo, L. (2010).
Preparation and characterization of activated
carbon from bamboo by microwave-induced
phosphoric acid activation. Industrial Crops And
Products, 31(2), 233-238.
- López-Cano, I., Roig, A., Cayuela, M.L.,
Alburquerque, J.A. & Sánchez-Monedero,
M.A. (2016). Biochar improves N cycling during
composting of olive mill wastes and sheep
manure. Waste Management, 49, 553-559.
- Lu, Q., Wang, Z., Dong, C.Q., Zhang, Z.F., Zhang, Y.,
Yang, Y.P. & Zhu, X.F. (2011). Selective fast
pyrolysis of biomass impregnated with ZnCl2:
Furfural production together with acetic acid and
activated carbon as by-products. Journal of
Analytical And Applied Pyrolysis, 91(1), 273-279.
- Lua, A.C. & Yang, T. (2004). Effect of activation
temperature on the textural and chemical
properties of potassium hydroxide activated
carbon prepared from pistachio-nut shell. Journal
of Colloid And Interface Science, 274(2), 594-
601.
- Malik, R., Ramteke, D.S. & Wate, S.R. (2007).
Adsorption of malachite green on groundnut shell
waste based powdered activated carbon. Waste
Management, 27(9), 1129-1138.
- Matos, J., Nahas, C., Rojas, L. & Rosales, M. (2011).
Synthesis and characterization of activated carbon
from sawdust of Algarroba wood. 1. Physical
activation and pyrolysis. Journal of Hazardous
Materials, 196, 360-369.
- Qian, Q., Machida, M. & Tatsumoto, H. (2007).
Preparation of activated carbons from cattlemanure compost by zinc chloride activation.
Bioresource Technology, 98(2), 353-360.
- Şahin, Ö., Saka, C., Ceyhan, A.A. & Baytar, O. (2016).
The pyrolysis process of biomass by two-stage
chemical activation with different methodology
and iodine adsorption. Energy Sources, Part A:
Recovery, Utilization, And Environmental Effects,
38(12), 1756-1762.
- Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W.,
... & Zhao, R. (2010). Preparation of activated
carbon from cattail and its application for dyes
removal. Journal of Environmental Sciences,
22(1), 91-97.
- Teng, H., Lin, Y.C. & Hsu, L.Y. (2000). Production of
activated carbons from pyrolysis of waste tires
impregnated with potassium hydroxide. Journal
of the Air & Waste Management Association,
50(11), 1940-1946.
- Yahya, M.A., Al-Qodah, Z. & Ngah, C.Z. (2015).
Agricultural bio-waste materials as potential
sustainable precursors used for activated carbon
production: A review. Renewable & Sustainable
Energy Reviews, 46, 218-235.
- Zhang, C., Zhu, X., Cao, M., Li, M., Li, N., Lai, L., ... &
Wei, D. (2016). Hierarchical Porous Carbon
Materials Derived from Sheep Manure for High‐
Capacity Supercapacitors. ChemSusChem, 9(9),
932-937.