Araştırma Makalesi
BibTex RIS Kaynak Göster

Orman Yangınlarının Toprak kaybı üzerindeki etkisinin RUSLE ve Yeni Bir Yaklaşım Kullanılarak Belirlenmesi: Çınarpınar Orman İşletme Şefliği Örneği/Türkiye

Yıl 2023, , 435 - 448, 30.09.2023
https://doi.org/10.35229/jaes.1300671

Öz

Su erozyonu dünya genelinde çevresel, ekonomik ve sosyolojik bir sorundur. Günümüzde orman yangınları, özellikle Akdeniz havzasında, su erozyonunun daha fazla oluşmasını tetiklemektedir. Bu nedenle, bu çalışma Türkiye'de Çınarpınar Orman İşletmesi'nde orman yangınlarının toprak kaybı duyarlılığı üzerindeki etkisini belirlemeyi amaçlamaktadır. Toprak kaybını belirlemek için RUSLE modeli kullanılmıştır. Mevcut durum (ana senaryo) ve orman yangını senaryosu için iki toprak kaybı haritası oluşturulmuştur. Orman yangını senaryosu için, RUSLE modelindeki R, K ve LS faktörleri yangın şiddet indeksine bağlı olarak değiştirilmiştir. Son olarak, ana ve orman yangını senaryolarını temsil eden iki harita karşılaştırılmıştır. Çınarpınar Orman İşletmesi'nde mevcut ortalama toprak kaybı 5,34 t ha-1 yıl-1 olarak bulunurken, orman yangını senaryosu için ortalama toprak kaybı 12,44 t ha-1 yıl-1 olarak belirlenmiştir. Çalışma alanında orman yangınlarının toprak kaybını 2 kattan fazla artırabileceği tespit edilmiştir. Orman yangınlarına karşı çok düşük toprak kaybı duyarlılığına sahip alanlar verimli ormanların %41,97'sini oluştururken, çok yüksek, yüksek, orta ve düşük toprak kaybı duyarlılığına sahip alanlar verimli ormanların sırasıyla %3,64, %9,28, %27,50 ve %17,61'ini oluşturmaktadır. Doğal koşullar altında yangın şiddeti ile toprak kaybı duyarlılığı arasında her zaman doğrusal bir ilişki olmadığı da ortaya konulmuştur. Sonuç olarak, bu çalışmanın hem orman yangını hem de toprak kaybı risklerini azaltmayı amaçlayan çok amaçlı yaklaşımın uygulanmasında karar vericilere yardımcı olacağı ümit edilmektedir.

Kaynakça

  • Abu Hammad, A., Lundekvam, H. & Børresen, T. (2005). Adaptation of RUSLE in the eastern part of the Mediterranean region. Environmental Management, 34(6), 829-841.
  • Agbeshie, A.A., Abugre, S. & Atta-Darkwa, T. et al. (2022). A review of the effects of forest fire on soil properties. J. For. Res. 33, 1419-1441. DOI: 10.1007/s11676-022-01475-4
  • Agee, J. (2007). Fire severity. In: FireWords: Fire Science Glossary [electronic]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.firewords.net DOI: 10.1007/s11676-023-01599-1
  • Allafta, H. & Opp, C. (2022). Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran). Appl. Sci. 12, 7776. DOI: 10.3390/app12157776
  • Alaboz, P., Dengiz, O., Demir, S. & Şenol, H. (2021). Digital mapping of soil erodibility factors based on decision tree using geostatistical approaches in terrestrial ecosystem. Catena, 207, 105634.
  • Al-Quraishi, A.M.F. (2003). Soil Erosion Risk Prediction with RS and GIS for the Northwestern Part of Hebei Province, China. Journal of Applied Sciences, 3, 659-669.
  • Alparslan, K. & Küçükönder, M. (2021). Kaman deresi alt havzasının erozyon duyarlılığı. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24, 3.
  • Aytop, H. & Şenol, S. (2022). The effect of different land use planning scenarios on the amount of total soil losses in the Mikail Stream Micro-Basin. Environ Monit Assess, 194, 321. DOI: 10.1007/s10661-022- 09937-2
  • Babalık, A.A., Dursun, İ. & Yazıcı, N. (2021). Türkiye’de erozyon sorunu ve erozyon tahmininde kullanılan modeller. In İ. Cengizler, & S. Duman (Eds.), Ziraat, Orman ve Su Ürünlerinde Araştırma ve Değerlendirmeler - 1, (pp. 182- 205). Ankara: Gece kitaplığı.
  • Balde, B., Vega-Garcia, C. & Gelabert, P.J. et al. (2023). The relationship between fire severity and burning efficiency for estimating wildfire emissions in Mediterranean forests. J. For. Res., DOI: 10.1007/s11676-023-01599-1
  • Bayazıt, Y. & Koç, C. (2022). The impact of forest fires on floods and erosion: Marmaris, Türkiye. Environ Dev Sustain, 24, 13426-13445. DOI: 10.1007/s10668-022-02624-9
  • Bonilla, C.A., Reyes, J.L. & Magri, A. (2010). Water Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE) in a GIS Framework, Central Chile. Chilean journal of agricultural research, 70(1), 159-169. DOI: 10.4067/S0718- 58392010000100017
  • ÇEM. (2018). DEMİS Türkiye Su Erozyonu İstatistikleri, Teknik Özet Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları, Ankara, Türkiye. Chalise, D., Kumar, L. & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil Syst., 3, 12.
  • Coschignano, G., Nicolaci, A., Ferrari, E., Cruscomagno, F. & Iovino, F. (2019). Evaluation of hydrological and erosive effects at the basin scale in relation to the severity of forest fires. iForest, 12, 427-434. DOI: 10.3832/ifor2878-012
  • Curran, M.P., Chapman, B., Hope, G.D. & Scott, D. (2006). Large-scale Erosion and Flooding after Wildfires: Understanding the Soil Conditions. Technical Report 030, Ministry of Forests and Range, Research Branch, Victoria, British Columbia. 24 pp.
  • Danacıoğlu, Ş. & Tağıl, Ş. (2017). Bakırçay Havzası’nda RUSLE modeli kullanarak erozyon riskinin değerlendirmesi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20(37), 1-18. DOI: 10.31795/baunsobed.645168
  • De Girolamo, A.M., Cerdan, O., Grangeon, T., Ricci, G.F., Vandromme, R. & Lo Porto, A. (2022). Modelling effects of forest fire and post-fire management in a catchment prone to erosion: impacts on sediment yield. Catena, 212. DOI: 10.1016/j.catena.2022.106080
  • Değerliyurt, M. (2013). Antakya Şehri ve Yakın Çevresinde Meydana Gelen Erozyonun Coğrafi Dağılışı ve Analizi. Journal of Turkish Studies, 8(8), 1745- 1764.
  • Değerliyurt, M. (2014). Coğrafi bilgi sistemleri kullanilarak orman yanginlarinin erozyona etkisinin belirlenmesi, Amanos dağlari örneği. Marmara Coğrafya Dergisi, 29, 195-219. DOI: 10.14781/mcd.77907
  • Depountis, N., Michalopoulou, M., Kavoura, K., Nikolakopoulos, K. & Sabatakakis, N. (2020). Estimating Soil Erosion Rate Changes in Areas Affected by Wildfires. ISPRS International Journal of Geo-Information, 9(10), 562. MDPI AG. DOI: 10.3390/ijgi9100562
  • Durán Zuazo, V.H. (2008). Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev., 28, 65-86. DOI: 10.1051/agro:2007062
  • Dursun, İ. & Babalık, A.A. (2023). Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry, 24(1), 25-38.
  • Dutal, H. (2022). Determination of the impact of forest fires on soil erosion risk by using the ICONA Model: a case study of Ayvalı Dam Watershed. Turkish Journal of Forest Science, 6(2), 510-538. DOI: 10.32328/turkjforsci.1167356
  • Dutal, H. & Reis, M. (2020). Identification of priority areas for sediment yield reduction by using a GeoWEPPbased prioritization approach. Arab J Geosci, 13, 1024. DOI: 10.1007/s12517-020-06039-6
  • Efthimiou, N., Psomiadis, E. & Panagos, P. (2020). Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. Catena (Amst), 187, 104320. DOI: 10.1016/j.catena.2019.104320
  • Erpul, G., Şahin, S., İnce, K., Küçümen, A., Akdağ, M.A., Demirtaş, İ. & Çetin, E. (2018). Türkiye Su Erozyonu Atlası. Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları. Ankara.
  • Estes, B.L., Knapp, E.E., Skinner, C.N., Miller, J.D. & Preisler, H.K. (2017). Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere, 8(5). DOI: 10.1007/e01794.10.1002/ecs2.1794
  • Evelpidou, N., Tzouxanioti, M., Gavalas, T., Spyrou, E., Saitis, G., Petropoulos, A. & Karkani, A. (2022). Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece. Land, 11, 21. DOI: 10.3390/land11010021
  • Fang, L., Yang, J., White, M. & Liu, Z. (2018). Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests, 9(3), 130. DOI: 10.3390/f9030130
  • FAO. (2006). Global forest resources assessment 2005 – Report on fires in the Mediterranean region. http://ftp.fao.org/docrep/fao/009/J7564E/J7564E00 .pdf
  • Farhan, Y. & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci., 74, 4649-4669. DOI: 10.1007/s12665-015-4430-7
  • Ganasri, B.P. & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci. Front., 7(6), 953-961
  • Garrido-Ruiz, C., Sandoval, M., Stolpe, N. & SanchezHernandez, J.C. (2022). Fire impacts on soil and post fire emergency stabilization treatments in Mediterranean-climate regions. Chilean J. Agric. Res., 82(2), 335-347. DOI: 10.4067/S0718- 58392022000200335
  • GDMS. (2022). General directorate of meteorological service, Ankara.
  • Gimeno-García, E., Andreu, V. & Rubio, J.L. (2007). Influence of vegetation recovery onwater erosion at short- and medium-term after experimental fires in a Mediterranean shrubland. Catena, 69, 150-160.
  • Gokkaya, K. (2022). Burned Area and Fire Severity Prediction of A Forest Fire Using A Sentinel 2- Derived Spectral Index in Çanakkale, Türkiye. Turkish Journal of Bioscience and Collections, 6(2), 37-44. DOI: 10.26650/tjbc.1082039
  • Göl, C., Çakir, M., Edis, S. & Yilmaz, H. (2010). The effects of land use/land cover change and demographic processes (1950-2008) on soil properties in the Gökçay catchment, Türkiye. African Journal of Agricultural Research, 4(13), 1670-1677.
  • González Bonorino, G. & Osterkamp, W.R. (2004). Applying RUSLE 2.0 on burned forestlands: an appraisal. Journal of Soil and Water Conservation, 59(1), 36-42.
  • Han, D., Di, X., Yang, G., Sun, L. & Weng, Y. (2021). Quantifying fire severity: a brief review and recommendations for improvement. Ecosystem Health and Sustainability, 7, 1. DOI: 10.1080/20964129.2021.1973346
  • Hirschberger, P. (2016). Forests Ablaze - Causes and effects of global forest fires. World Wildlife Fund (WWF), 107 pages, WWF Deutschland, Berlin.
  • IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O.
  • Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
  • İrvem, A. & Tülücü, K. (2004). Coğrafi bilgi sistemi ile toprak kaybı ve sediment verimi tahmin modelinin (EST) oluşturulması ve Seyhan-Körkün Alt Havzasına uygulanması. ÇÜ Fen Bil. Ens. Der., 13, 1-7.
  • Jiang, L., Yao, Z. & Liu, Z. et al. (2015). Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE. Nat Hazards, 76, 1831-1847. DOI: 10.1007/s11069-014-1569-6
  • Kalambukattu, J. & Kumar, S. (2017). Modelling soil erosion risk in a mountainous watershed of MidHimalaya by integrating RUSLE model with GIS. Eurasian Journal of Soil Science, 6(2), 92-105. DOI: 10.18393/ejss.286442
  • Kara, Ö., Çakıroğlu, K. & Koralay, N. (2018). Foldere Yağış Havzasında RUSLE Yöntemine Göre Toprak Erozyonunun Belirlenmesi. Bartın Orman Fakültesi Dergisi, 20(3), 638-652.
  • Keeley, J.E. (2009). Fire intensity, fire severity, and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116- 126.
  • Kinnel, P.I.A. (2005). Why the Universal Soil Loss Equation and the revised version of it do not predict event erosion well. Hydrological Processes, 19, 851-854.
  • Koralay, N. & Kara, Ö. (2022). Trabzon Değirmendere Çatak alt havzasının erozyon risk haritasının oluşturulması ve sediment iletim oranının belirlenmesi. Ormancılık Araştırma Dergisi, 9, 41- 54. DOI: 10.17568/ogmoad.1095264
  • Korkanç, S.Y. (2018). Effects of the land use/cover on the surface runoff and soil loss in the Niğde Akkaya Dam Watershed, Türkiye. Catena, 163, 233-243. DOI: 10.1016/j.catena.2017.12.023
  • Lanorte, A., Cillis, G., Calamita, G., Nolè, G., Pilogallo, A., Tucci, B. & De Santis, F. (2019). Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomatics, Natural Hazards & Risk, 10, 1, 1563-1595. DOI: 10.1080/19475705.2019.1578271
  • Larsen, I.J. & MacDonald, L.H. (2007). Predicting postfire sediment yields at the hillslope scale: Testing RUSLE and Disturbed WEPP. Water Resour. Res., 43, W11412. DOI: 10.1029/2006WR005560
  • López-Vicente, M. & Navas, A. (2009). Predicting soil erosion with RUSLE in mediterranean agricultural systems at catchment scale. Soil Sci., 174, 272-282.
  • Lucas-Borja, M.E., Zema, D.A., Carrà, B.G., Cerdà, A., Plaza-Alvarez, P.A., Cózar, J.S., GonzalezRomero, J., Moya, D. & de las Heras, J. (2018). Short-Term Changes in Infiltration between Straw Mulched and Non-Mulched Soils after Wildfire in Mediterranean Forest Ecosystems. Ecol. Eng., 122, 27-31.
  • Maina, C.W., Sang, J.K., Raude, J.M., Mutua, B.M. & Moriasi, D.N. (2019). Sediment Distribution and Accumulation in Lake Naivasha, Kenya over the Past 50 Years. Lakes Reserv. Res. Manag., 24, 162- 172.
  • Martin, D.A. & Moody, J.A. (2001). Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Processes, 15, 2893-2903. DOI: 10.1002/hyp.380
  • Merritt, W., Letcher, R. & Jakeman, A. (2003). A review of erosion and sediment transport models. Environ Model Softw, 18, 761-799.
  • Miller, J.D., Nyhan, J.W. & Yool, S.R. (2003). Modeling potential erosion due to the Cerro Grande fire with a GIS-based implementation of the Revised Universal Soil Loss Equation. International Journal of Wildland Fire, 12, 85-100.
  • Montealegre, A.L., Lamelas, M.T., Tanase, M.A. & De la Riva, J. (2014). Forest Fire Severity Assessment Using ALS Data in a Mediterranean Environment. Remote Sens., 6, 4240-4265. DOI: 10.3390/rs6054240
  • Morgan, P., Keane, R.E., Dillon, G.K., Jain, T.B., Hudak, A.T., Karau, E.C., Sikkink, P.G., Holden, Z.A. & Strand, E.K. (2014). Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. International Journal of Wildland Fire, 23, 1045-1060.
  • Morris, S.E. & Moses, T.A. (1987). Forest fire and the natural soil erosion regime in the Colorado Front Range. Annals of the Association of American Geographers, 77, 245-254. DOI: 10.1111/j.1467- 8306.1987.tb00156.x
  • Oguz, H., Doygun, N., Kisakurek, S. & Ozcalik, M. (2019). Calculating surface temperature of Izmir, Türkiye. ArtGRID-Journal of Architecture, Engineering & Fine Arts, 1(2), 36-46.
  • Oldeman, L.R. (1994). The global extent of soil degradation. In: Greenland, D.J., Szabolcs, I. (Eds.), Soil Resilience and Sustainable Land Use. CAB Int., Wallingford, pp. 99–118.
  • Ozalp, M., Yuksel, E.E. & Yuksek, T. (2016). Soil property changes after conversion from forest to pasture in Mount Sacinka, Artvin, Türkiye. Land Degrad. Dev., 27, 1007-1017.
  • Özdemir, M.A. & Tatar Dönmez, S. (2016). CBS Tabanlı Rusle Yöntemiyle Işıklı Gölü Havzasının Erozyon Risk Analizi. Harita Teknolojileri Elektronik Dergisi, 8(1), 1-21. Retrieved from https://dergipark.org.tr/tr/pub/hartek/issue/17324/1 80938
  • Özden, Ş. & Özden, M. (1997). Türkiye Toprak Erozyon Tahmin Modeli, TURTEM. Başbakanlık Türkiye Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğüm Yayınları, Ankara.
  • Rapp, J.F., Lopes, V.L. & Renard, K.G. (2001). Comparing soil erosion estimates from RUSLE and USLE on natural runoff plots. In: AscoughII II, J.C., Flanagan, D.C. (Eds.), Proc. Int. Symp. Soil Erosion Research for the 21st Century, 3–5 January 2001, Honolulu, HI, USA. American Society Agricultural Engineers, St. Joseph, MI, USA, pp. 24-27.
  • Raza, A., Ahrends, H., Habib-Ur-Rahman, M. & Gaiser, T. (2021). Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops. Land, 10, 422. DOI: 10.3390/land10040422
  • Reaney, S.M., Bracken, L.J. & Kirkby, M.J. (2014). The importance of surface controls on overland flow connectivity in semiarid environments: Results from a numerical experimental approach. Hydrological Processes, 28(4), 2116-2128. DOI: 10.1002/hyp.9769
  • Reis, M., Dutal, H., Bolat, N. & Savaci, G. (2017). Soil erosion risk assessment using GIS and ICONA, a case study: in Kahramanmaras. Turk J Agric Facul Gaziosmanpasa Univ., 34(1):64-75. DOI: 10.13002/jafag4208
  • Rellini, I., Scopesi, C., Olivari, S., Firpo, M. & Maerker, M. (2019). Assessment of soil erosion risk in a typical Mediterranean environment using a high resolution RUSLE approach (Portofino promontory, NW-Italy). Journal of Maps, 15(2), 356-362. DOI: 10.1080/17445647.2019.1599452
  • Renard, K.G., Foster, G.R., Weesies, G.A., Mccoll, D.K. & Yoder, D.C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Dep. Agric., Agric. Handb. No. 703, 404p.
  • Schoenholtz, S.H. (2004). Impacts of Forest Management on Water Quality. Hydrology, Editor(s): Jeffery Burley, Encyclopedia of Forest Sciences, Elsevier, 2004, Pages 377-387, ISBN 9780121451608, DOI: 10.1016/B0-12-145160-7/00209-X.
  • Shakesby, R. (2011). Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci. Rev., 105, 71-100.
  • Shakesby, R.A., Bento, C.P.M., Ferreira, C.S.S., Ferreira, A.J.D., Stoof, C.R., Urbanek, E. & Walsh, R.P.D. (2015). Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in Central Portugal. Catena, 128, 278-293. DOI: 10.1016/j.catena.2013.03.012
  • Shakesby, R.A., Coelho, C.O.A., Ferreira, A.D., Terry, J.P. & Walsh. W.P.D. (1993). Wildfire impacts on soil erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of Wildland Fire, 3, 95-110. DOI: 10.1071/WF9930095
  • Sharda, V., Mandai, D. & Ojasvi, P.R. (2013). Identification of soil erosion risk areas for conservation planning in different states of India. J. Environ. Biol., 34, 219-226.
  • Sharma, N., Kaushal, A. & Yousuf, A. et al. (2023). Geospatial technology for assessment of soil erosion and prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India. Environ. Sci. Pollut. Res., 30, 515-531. DOI: 10.1007/s11356-022-22152-3
  • Singh, S. & Kansal, M.L. (2023). Sub-basin prioritisation using RUSLE in a Mountainous River Basin of Uttarakhand (India). Environ. Dev. Sustain., DOI: 10.1007/s10668-023-02989-5
  • Sirjani, E. & Mahmoodabadi, M. (2014). Effects of sheet flow rate and slope gradient on sediment load. Arab J Geosci 7, 203-210. DOI: 10.1007/s12517-012- 0728-x
  • Sivrikaya, F. & Küçük, Ö. (2022). Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Informat., 68, Article 101537. DOI: 10.1016/j.ecoinf.2021.101537
  • Stefanidis, S., Alexandridis, V., Chatzichristaki, C. & Stefanidis, P. (2021). Assessing Soil Loss by Water Erosion in a Typical Mediterranean Ecosystem of Northern Greece under Current and Future Rainfall Erosivity. Water, 13(15), 2002. MDPI AG. Retrieved from DOI: 10.3390/w13152002
  • Stoof, C.R., Ferreira, A.J.D., Mol, W., van den Berg, J., De Kort, A., Drooger, S., Slingerland, E.C., Mansholt, A.U. & Ritsema, C.J. (2015). Soil surface changes increase runoff and erosion risk after a low–moderate severity fire. Geoderma, 239- 240, 58-67. DOI: 10.1016/j.geoderma.2014.09.020
  • Stoof, C.R., Wesseling, J.G. & Ritsema, C.J. (2010). Effects of fire and ash on soil water retention. Geoderma, 159, 276-285.
  • Sugihara, N.S., van Wagtendonk, J.W., Shaffer, K.E., Fites-Kaufman, J. & Thode, A.E. (2006). Fire in California’s ecosystems. University of California Press, Berkeley, California, USA.
  • Šúri, M., Cebecauer, T., Hofierka, J. & Fulajtár, E. (2002). Soil erosion assessment of Slovakia at a regional scale using GIS. Ekológia (Bratislava), 21, 404-422.
  • Swarnkar, S., Malini, A., Tripathi, S. & Sinha, R. (2018). Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India. Hydrol. Earth Syst. Sci., 22, 2471-2485, DOI: 10.5194/hess22-2471-2018
  • Tanyaş, H., Kolat, C. & Süzen, M.L. (2015). A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. J. Hydro., 528, 584- 598.
  • Terranova, O., Antronico, L., Coscarelli, R. & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, 112, 228-245. DOI: 10.1016/j.geomorph.2009.06.009
  • Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: a case study of Dolakha district, Nepal. Environ. Syst. Res., 9, 15. DOI: 10.1186/s40068-020-00177-2
  • TRGM. (2021). Tarım ve Orman Bakanlığı Tarım Reformu Genel Müdürlüğü. https://www.tarimorman.gov.tr/TRGM
  • Tselka, I., Krassakis, P., Rentzelos, A., Koukouzas, N. & Parcharidis, I. (2021). Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece. Remote Sens., 13, 5160. DOI: 10.3390/rs13245160
  • Tüfekçioğlu, M. & Yavuz, M. (2016). Yusufeli mikro havzasında (Artvin) yüzey erozyonu toprak kaybının tahmin edilmesi ve erozyon risk haritasının oluşturulması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 17(2), 188-199. DOI: 10.17474/acuofd.47342
  • Valkanou, K., Karymbalis, E., Bathrellos, G., Skilodimou, H., Tsanakas, K., Papanastassiou, D. & Gaki-Papanastassiou, K. (2022). Soil Loss Potential Assessment for Natural and Post-Fire Conditions in Evia Island, Greece. Geosciences, 12, 367. DOI: 10.3390/geosciences12100367
  • Vijith, H., Seling, L.W. & Dodge-Wan, D. (2018). Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environ. Dev. Sustain., 20, 1365-1384. DOI: 10.1007/s10668-017-9946-4
  • Weninger, T., Filipović, V., Mešić, M., Clothier, B. & Filipović, L. (2019). Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma, 338, 187-196. DOI: 10.1016/j.geoderma.2018.12.008
  • Wischmeier, W.H. & Smith, D.D. (1978). Predicting Rainfall Erosion Losses, a Guide to Conservation Planning; Agriculture Handbook No. 537; US Department of Agriculture, Science and Education Administration: Washington, DC, USA.
  • Wittenberg, L., van der Wal, H., Keesstra, S. & Tessler, N. (2020). Post-fire management treatment effects on soil properties and burned are restoration in a wildland-urban interface, Haifa fire case study. Science of the Total Environment, 716, 135190. DOI: 10.1016/j.scitotenv.2019.135190
  • Yazıcı, N., Babalık, A.A. & Dursun, İ. (2018). Bazı tıbbi ve aromatik bitkilerin erozyon kontrolünde kullanımı. V. Uluslararası Multidisipliner Çalışmaları Kongresi, Kasım 2-3, Antalya, 417- 424.
  • Yuksek, F. & Yuksek, T. (2015). Growth performance of Sainfoin and its effects on the runoff, soil loss and sediment concentration in a semi-arid region of Türkiye. Catena, 133, 309-317. DOI: 10.1016/j.catena.2015.05.018
  • Yuksel, A., Gundogan, R. & Akay, A.E. (2008). Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Türkiye. Sensors, 8, 4851-4865. DOI: 10.3390/s8084851
  • Yüksek, T., Özçelik, A.E. & Verep, B. (2020). Determination of Some Basin Characteristics and Distribution of Lands According to Physiographic Features of Fırtına River Basin Using Geographical Information Systems. J. Anatolian Env. and Anim. Sciences, 5(3), 439-449.
  • Yüksek, T. (2009). Effects of land use management on surface soil properties, erosion indices and green tea yield in humid Blacksea region. Fresenius Envir. Bull., 18(5b), 848-857.
  • Zald, H.S.J. & Dunn, C.J. (2018). Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol Appl., Jun; 28(4), 1068-1080. DOI: 10.1002/eap.1710. Epub 2018 Apr 26. PMID: 29698575.

Determining the Effect of Forest Fires on Soil Loss Using RUSLE and a New Approach: The Case of Çınarpınar Forestry Enterprise/Türkiye

Yıl 2023, , 435 - 448, 30.09.2023
https://doi.org/10.35229/jaes.1300671

Öz

Soil erosion by water (WSE) is an environmental, economic, and sociological problem in the world. Nowadays, forest fires have triggered more WSE, especially in the Mediterranean basin. Therefore, the present study aims to determine the effect of forest fires on soil loss susceptibility in the Çınarpınar Forestry Enterprise, Turkey. The RUSLE model was used to determine soil loss. Two soil loss maps were generated for the actual situation (base scenario) and forest fire scenario. For the forest fire scenario, R, K, and LS factors in the RUSLE model were modified based on the forest fire severity index. Finally, two maps representing base and forest fire scenarios were compared. The actual mean soil loss was found as 5.34 t ha-1 year-1 in the Çınarpınar Forestry Enterprise while the mean soil loss was determined as 12.44 t ha-1 year-1 for the forest fire scenario. It was found that forest fires would increase soil loss by more than 2 times in the study area. Areas with very low soil loss susceptibility to forest fires constitute 41.97% of productive forests, while areas with very high, high, medium, and low soil loss susceptibility constitute 3.64%, 9.28%, 27.50%, and 17.61% of productive forests, respectively. It was also revealed that there is not always a linear relationship between fire severity and soil loss susceptibility under natural conditions. Consequently, it is hoped that this study will help decision-makers in the implementation of the multi-purpose approach, which aims to reduce the risk of both forest fire and soil loss.

Kaynakça

  • Abu Hammad, A., Lundekvam, H. & Børresen, T. (2005). Adaptation of RUSLE in the eastern part of the Mediterranean region. Environmental Management, 34(6), 829-841.
  • Agbeshie, A.A., Abugre, S. & Atta-Darkwa, T. et al. (2022). A review of the effects of forest fire on soil properties. J. For. Res. 33, 1419-1441. DOI: 10.1007/s11676-022-01475-4
  • Agee, J. (2007). Fire severity. In: FireWords: Fire Science Glossary [electronic]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.firewords.net DOI: 10.1007/s11676-023-01599-1
  • Allafta, H. & Opp, C. (2022). Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran). Appl. Sci. 12, 7776. DOI: 10.3390/app12157776
  • Alaboz, P., Dengiz, O., Demir, S. & Şenol, H. (2021). Digital mapping of soil erodibility factors based on decision tree using geostatistical approaches in terrestrial ecosystem. Catena, 207, 105634.
  • Al-Quraishi, A.M.F. (2003). Soil Erosion Risk Prediction with RS and GIS for the Northwestern Part of Hebei Province, China. Journal of Applied Sciences, 3, 659-669.
  • Alparslan, K. & Küçükönder, M. (2021). Kaman deresi alt havzasının erozyon duyarlılığı. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24, 3.
  • Aytop, H. & Şenol, S. (2022). The effect of different land use planning scenarios on the amount of total soil losses in the Mikail Stream Micro-Basin. Environ Monit Assess, 194, 321. DOI: 10.1007/s10661-022- 09937-2
  • Babalık, A.A., Dursun, İ. & Yazıcı, N. (2021). Türkiye’de erozyon sorunu ve erozyon tahmininde kullanılan modeller. In İ. Cengizler, & S. Duman (Eds.), Ziraat, Orman ve Su Ürünlerinde Araştırma ve Değerlendirmeler - 1, (pp. 182- 205). Ankara: Gece kitaplığı.
  • Balde, B., Vega-Garcia, C. & Gelabert, P.J. et al. (2023). The relationship between fire severity and burning efficiency for estimating wildfire emissions in Mediterranean forests. J. For. Res., DOI: 10.1007/s11676-023-01599-1
  • Bayazıt, Y. & Koç, C. (2022). The impact of forest fires on floods and erosion: Marmaris, Türkiye. Environ Dev Sustain, 24, 13426-13445. DOI: 10.1007/s10668-022-02624-9
  • Bonilla, C.A., Reyes, J.L. & Magri, A. (2010). Water Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE) in a GIS Framework, Central Chile. Chilean journal of agricultural research, 70(1), 159-169. DOI: 10.4067/S0718- 58392010000100017
  • ÇEM. (2018). DEMİS Türkiye Su Erozyonu İstatistikleri, Teknik Özet Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları, Ankara, Türkiye. Chalise, D., Kumar, L. & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil Syst., 3, 12.
  • Coschignano, G., Nicolaci, A., Ferrari, E., Cruscomagno, F. & Iovino, F. (2019). Evaluation of hydrological and erosive effects at the basin scale in relation to the severity of forest fires. iForest, 12, 427-434. DOI: 10.3832/ifor2878-012
  • Curran, M.P., Chapman, B., Hope, G.D. & Scott, D. (2006). Large-scale Erosion and Flooding after Wildfires: Understanding the Soil Conditions. Technical Report 030, Ministry of Forests and Range, Research Branch, Victoria, British Columbia. 24 pp.
  • Danacıoğlu, Ş. & Tağıl, Ş. (2017). Bakırçay Havzası’nda RUSLE modeli kullanarak erozyon riskinin değerlendirmesi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20(37), 1-18. DOI: 10.31795/baunsobed.645168
  • De Girolamo, A.M., Cerdan, O., Grangeon, T., Ricci, G.F., Vandromme, R. & Lo Porto, A. (2022). Modelling effects of forest fire and post-fire management in a catchment prone to erosion: impacts on sediment yield. Catena, 212. DOI: 10.1016/j.catena.2022.106080
  • Değerliyurt, M. (2013). Antakya Şehri ve Yakın Çevresinde Meydana Gelen Erozyonun Coğrafi Dağılışı ve Analizi. Journal of Turkish Studies, 8(8), 1745- 1764.
  • Değerliyurt, M. (2014). Coğrafi bilgi sistemleri kullanilarak orman yanginlarinin erozyona etkisinin belirlenmesi, Amanos dağlari örneği. Marmara Coğrafya Dergisi, 29, 195-219. DOI: 10.14781/mcd.77907
  • Depountis, N., Michalopoulou, M., Kavoura, K., Nikolakopoulos, K. & Sabatakakis, N. (2020). Estimating Soil Erosion Rate Changes in Areas Affected by Wildfires. ISPRS International Journal of Geo-Information, 9(10), 562. MDPI AG. DOI: 10.3390/ijgi9100562
  • Durán Zuazo, V.H. (2008). Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev., 28, 65-86. DOI: 10.1051/agro:2007062
  • Dursun, İ. & Babalık, A.A. (2023). Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry, 24(1), 25-38.
  • Dutal, H. (2022). Determination of the impact of forest fires on soil erosion risk by using the ICONA Model: a case study of Ayvalı Dam Watershed. Turkish Journal of Forest Science, 6(2), 510-538. DOI: 10.32328/turkjforsci.1167356
  • Dutal, H. & Reis, M. (2020). Identification of priority areas for sediment yield reduction by using a GeoWEPPbased prioritization approach. Arab J Geosci, 13, 1024. DOI: 10.1007/s12517-020-06039-6
  • Efthimiou, N., Psomiadis, E. & Panagos, P. (2020). Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. Catena (Amst), 187, 104320. DOI: 10.1016/j.catena.2019.104320
  • Erpul, G., Şahin, S., İnce, K., Küçümen, A., Akdağ, M.A., Demirtaş, İ. & Çetin, E. (2018). Türkiye Su Erozyonu Atlası. Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları. Ankara.
  • Estes, B.L., Knapp, E.E., Skinner, C.N., Miller, J.D. & Preisler, H.K. (2017). Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere, 8(5). DOI: 10.1007/e01794.10.1002/ecs2.1794
  • Evelpidou, N., Tzouxanioti, M., Gavalas, T., Spyrou, E., Saitis, G., Petropoulos, A. & Karkani, A. (2022). Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece. Land, 11, 21. DOI: 10.3390/land11010021
  • Fang, L., Yang, J., White, M. & Liu, Z. (2018). Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests, 9(3), 130. DOI: 10.3390/f9030130
  • FAO. (2006). Global forest resources assessment 2005 – Report on fires in the Mediterranean region. http://ftp.fao.org/docrep/fao/009/J7564E/J7564E00 .pdf
  • Farhan, Y. & Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ Earth Sci., 74, 4649-4669. DOI: 10.1007/s12665-015-4430-7
  • Ganasri, B.P. & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci. Front., 7(6), 953-961
  • Garrido-Ruiz, C., Sandoval, M., Stolpe, N. & SanchezHernandez, J.C. (2022). Fire impacts on soil and post fire emergency stabilization treatments in Mediterranean-climate regions. Chilean J. Agric. Res., 82(2), 335-347. DOI: 10.4067/S0718- 58392022000200335
  • GDMS. (2022). General directorate of meteorological service, Ankara.
  • Gimeno-García, E., Andreu, V. & Rubio, J.L. (2007). Influence of vegetation recovery onwater erosion at short- and medium-term after experimental fires in a Mediterranean shrubland. Catena, 69, 150-160.
  • Gokkaya, K. (2022). Burned Area and Fire Severity Prediction of A Forest Fire Using A Sentinel 2- Derived Spectral Index in Çanakkale, Türkiye. Turkish Journal of Bioscience and Collections, 6(2), 37-44. DOI: 10.26650/tjbc.1082039
  • Göl, C., Çakir, M., Edis, S. & Yilmaz, H. (2010). The effects of land use/land cover change and demographic processes (1950-2008) on soil properties in the Gökçay catchment, Türkiye. African Journal of Agricultural Research, 4(13), 1670-1677.
  • González Bonorino, G. & Osterkamp, W.R. (2004). Applying RUSLE 2.0 on burned forestlands: an appraisal. Journal of Soil and Water Conservation, 59(1), 36-42.
  • Han, D., Di, X., Yang, G., Sun, L. & Weng, Y. (2021). Quantifying fire severity: a brief review and recommendations for improvement. Ecosystem Health and Sustainability, 7, 1. DOI: 10.1080/20964129.2021.1973346
  • Hirschberger, P. (2016). Forests Ablaze - Causes and effects of global forest fires. World Wildlife Fund (WWF), 107 pages, WWF Deutschland, Berlin.
  • IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O.
  • Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
  • İrvem, A. & Tülücü, K. (2004). Coğrafi bilgi sistemi ile toprak kaybı ve sediment verimi tahmin modelinin (EST) oluşturulması ve Seyhan-Körkün Alt Havzasına uygulanması. ÇÜ Fen Bil. Ens. Der., 13, 1-7.
  • Jiang, L., Yao, Z. & Liu, Z. et al. (2015). Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE. Nat Hazards, 76, 1831-1847. DOI: 10.1007/s11069-014-1569-6
  • Kalambukattu, J. & Kumar, S. (2017). Modelling soil erosion risk in a mountainous watershed of MidHimalaya by integrating RUSLE model with GIS. Eurasian Journal of Soil Science, 6(2), 92-105. DOI: 10.18393/ejss.286442
  • Kara, Ö., Çakıroğlu, K. & Koralay, N. (2018). Foldere Yağış Havzasında RUSLE Yöntemine Göre Toprak Erozyonunun Belirlenmesi. Bartın Orman Fakültesi Dergisi, 20(3), 638-652.
  • Keeley, J.E. (2009). Fire intensity, fire severity, and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116- 126.
  • Kinnel, P.I.A. (2005). Why the Universal Soil Loss Equation and the revised version of it do not predict event erosion well. Hydrological Processes, 19, 851-854.
  • Koralay, N. & Kara, Ö. (2022). Trabzon Değirmendere Çatak alt havzasının erozyon risk haritasının oluşturulması ve sediment iletim oranının belirlenmesi. Ormancılık Araştırma Dergisi, 9, 41- 54. DOI: 10.17568/ogmoad.1095264
  • Korkanç, S.Y. (2018). Effects of the land use/cover on the surface runoff and soil loss in the Niğde Akkaya Dam Watershed, Türkiye. Catena, 163, 233-243. DOI: 10.1016/j.catena.2017.12.023
  • Lanorte, A., Cillis, G., Calamita, G., Nolè, G., Pilogallo, A., Tucci, B. & De Santis, F. (2019). Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomatics, Natural Hazards & Risk, 10, 1, 1563-1595. DOI: 10.1080/19475705.2019.1578271
  • Larsen, I.J. & MacDonald, L.H. (2007). Predicting postfire sediment yields at the hillslope scale: Testing RUSLE and Disturbed WEPP. Water Resour. Res., 43, W11412. DOI: 10.1029/2006WR005560
  • López-Vicente, M. & Navas, A. (2009). Predicting soil erosion with RUSLE in mediterranean agricultural systems at catchment scale. Soil Sci., 174, 272-282.
  • Lucas-Borja, M.E., Zema, D.A., Carrà, B.G., Cerdà, A., Plaza-Alvarez, P.A., Cózar, J.S., GonzalezRomero, J., Moya, D. & de las Heras, J. (2018). Short-Term Changes in Infiltration between Straw Mulched and Non-Mulched Soils after Wildfire in Mediterranean Forest Ecosystems. Ecol. Eng., 122, 27-31.
  • Maina, C.W., Sang, J.K., Raude, J.M., Mutua, B.M. & Moriasi, D.N. (2019). Sediment Distribution and Accumulation in Lake Naivasha, Kenya over the Past 50 Years. Lakes Reserv. Res. Manag., 24, 162- 172.
  • Martin, D.A. & Moody, J.A. (2001). Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Processes, 15, 2893-2903. DOI: 10.1002/hyp.380
  • Merritt, W., Letcher, R. & Jakeman, A. (2003). A review of erosion and sediment transport models. Environ Model Softw, 18, 761-799.
  • Miller, J.D., Nyhan, J.W. & Yool, S.R. (2003). Modeling potential erosion due to the Cerro Grande fire with a GIS-based implementation of the Revised Universal Soil Loss Equation. International Journal of Wildland Fire, 12, 85-100.
  • Montealegre, A.L., Lamelas, M.T., Tanase, M.A. & De la Riva, J. (2014). Forest Fire Severity Assessment Using ALS Data in a Mediterranean Environment. Remote Sens., 6, 4240-4265. DOI: 10.3390/rs6054240
  • Morgan, P., Keane, R.E., Dillon, G.K., Jain, T.B., Hudak, A.T., Karau, E.C., Sikkink, P.G., Holden, Z.A. & Strand, E.K. (2014). Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. International Journal of Wildland Fire, 23, 1045-1060.
  • Morris, S.E. & Moses, T.A. (1987). Forest fire and the natural soil erosion regime in the Colorado Front Range. Annals of the Association of American Geographers, 77, 245-254. DOI: 10.1111/j.1467- 8306.1987.tb00156.x
  • Oguz, H., Doygun, N., Kisakurek, S. & Ozcalik, M. (2019). Calculating surface temperature of Izmir, Türkiye. ArtGRID-Journal of Architecture, Engineering & Fine Arts, 1(2), 36-46.
  • Oldeman, L.R. (1994). The global extent of soil degradation. In: Greenland, D.J., Szabolcs, I. (Eds.), Soil Resilience and Sustainable Land Use. CAB Int., Wallingford, pp. 99–118.
  • Ozalp, M., Yuksel, E.E. & Yuksek, T. (2016). Soil property changes after conversion from forest to pasture in Mount Sacinka, Artvin, Türkiye. Land Degrad. Dev., 27, 1007-1017.
  • Özdemir, M.A. & Tatar Dönmez, S. (2016). CBS Tabanlı Rusle Yöntemiyle Işıklı Gölü Havzasının Erozyon Risk Analizi. Harita Teknolojileri Elektronik Dergisi, 8(1), 1-21. Retrieved from https://dergipark.org.tr/tr/pub/hartek/issue/17324/1 80938
  • Özden, Ş. & Özden, M. (1997). Türkiye Toprak Erozyon Tahmin Modeli, TURTEM. Başbakanlık Türkiye Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğüm Yayınları, Ankara.
  • Rapp, J.F., Lopes, V.L. & Renard, K.G. (2001). Comparing soil erosion estimates from RUSLE and USLE on natural runoff plots. In: AscoughII II, J.C., Flanagan, D.C. (Eds.), Proc. Int. Symp. Soil Erosion Research for the 21st Century, 3–5 January 2001, Honolulu, HI, USA. American Society Agricultural Engineers, St. Joseph, MI, USA, pp. 24-27.
  • Raza, A., Ahrends, H., Habib-Ur-Rahman, M. & Gaiser, T. (2021). Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops. Land, 10, 422. DOI: 10.3390/land10040422
  • Reaney, S.M., Bracken, L.J. & Kirkby, M.J. (2014). The importance of surface controls on overland flow connectivity in semiarid environments: Results from a numerical experimental approach. Hydrological Processes, 28(4), 2116-2128. DOI: 10.1002/hyp.9769
  • Reis, M., Dutal, H., Bolat, N. & Savaci, G. (2017). Soil erosion risk assessment using GIS and ICONA, a case study: in Kahramanmaras. Turk J Agric Facul Gaziosmanpasa Univ., 34(1):64-75. DOI: 10.13002/jafag4208
  • Rellini, I., Scopesi, C., Olivari, S., Firpo, M. & Maerker, M. (2019). Assessment of soil erosion risk in a typical Mediterranean environment using a high resolution RUSLE approach (Portofino promontory, NW-Italy). Journal of Maps, 15(2), 356-362. DOI: 10.1080/17445647.2019.1599452
  • Renard, K.G., Foster, G.R., Weesies, G.A., Mccoll, D.K. & Yoder, D.C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Dep. Agric., Agric. Handb. No. 703, 404p.
  • Schoenholtz, S.H. (2004). Impacts of Forest Management on Water Quality. Hydrology, Editor(s): Jeffery Burley, Encyclopedia of Forest Sciences, Elsevier, 2004, Pages 377-387, ISBN 9780121451608, DOI: 10.1016/B0-12-145160-7/00209-X.
  • Shakesby, R. (2011). Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci. Rev., 105, 71-100.
  • Shakesby, R.A., Bento, C.P.M., Ferreira, C.S.S., Ferreira, A.J.D., Stoof, C.R., Urbanek, E. & Walsh, R.P.D. (2015). Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in Central Portugal. Catena, 128, 278-293. DOI: 10.1016/j.catena.2013.03.012
  • Shakesby, R.A., Coelho, C.O.A., Ferreira, A.D., Terry, J.P. & Walsh. W.P.D. (1993). Wildfire impacts on soil erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of Wildland Fire, 3, 95-110. DOI: 10.1071/WF9930095
  • Sharda, V., Mandai, D. & Ojasvi, P.R. (2013). Identification of soil erosion risk areas for conservation planning in different states of India. J. Environ. Biol., 34, 219-226.
  • Sharma, N., Kaushal, A. & Yousuf, A. et al. (2023). Geospatial technology for assessment of soil erosion and prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India. Environ. Sci. Pollut. Res., 30, 515-531. DOI: 10.1007/s11356-022-22152-3
  • Singh, S. & Kansal, M.L. (2023). Sub-basin prioritisation using RUSLE in a Mountainous River Basin of Uttarakhand (India). Environ. Dev. Sustain., DOI: 10.1007/s10668-023-02989-5
  • Sirjani, E. & Mahmoodabadi, M. (2014). Effects of sheet flow rate and slope gradient on sediment load. Arab J Geosci 7, 203-210. DOI: 10.1007/s12517-012- 0728-x
  • Sivrikaya, F. & Küçük, Ö. (2022). Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Informat., 68, Article 101537. DOI: 10.1016/j.ecoinf.2021.101537
  • Stefanidis, S., Alexandridis, V., Chatzichristaki, C. & Stefanidis, P. (2021). Assessing Soil Loss by Water Erosion in a Typical Mediterranean Ecosystem of Northern Greece under Current and Future Rainfall Erosivity. Water, 13(15), 2002. MDPI AG. Retrieved from DOI: 10.3390/w13152002
  • Stoof, C.R., Ferreira, A.J.D., Mol, W., van den Berg, J., De Kort, A., Drooger, S., Slingerland, E.C., Mansholt, A.U. & Ritsema, C.J. (2015). Soil surface changes increase runoff and erosion risk after a low–moderate severity fire. Geoderma, 239- 240, 58-67. DOI: 10.1016/j.geoderma.2014.09.020
  • Stoof, C.R., Wesseling, J.G. & Ritsema, C.J. (2010). Effects of fire and ash on soil water retention. Geoderma, 159, 276-285.
  • Sugihara, N.S., van Wagtendonk, J.W., Shaffer, K.E., Fites-Kaufman, J. & Thode, A.E. (2006). Fire in California’s ecosystems. University of California Press, Berkeley, California, USA.
  • Šúri, M., Cebecauer, T., Hofierka, J. & Fulajtár, E. (2002). Soil erosion assessment of Slovakia at a regional scale using GIS. Ekológia (Bratislava), 21, 404-422.
  • Swarnkar, S., Malini, A., Tripathi, S. & Sinha, R. (2018). Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India. Hydrol. Earth Syst. Sci., 22, 2471-2485, DOI: 10.5194/hess22-2471-2018
  • Tanyaş, H., Kolat, C. & Süzen, M.L. (2015). A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. J. Hydro., 528, 584- 598.
  • Terranova, O., Antronico, L., Coscarelli, R. & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology, 112, 228-245. DOI: 10.1016/j.geomorph.2009.06.009
  • Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: a case study of Dolakha district, Nepal. Environ. Syst. Res., 9, 15. DOI: 10.1186/s40068-020-00177-2
  • TRGM. (2021). Tarım ve Orman Bakanlığı Tarım Reformu Genel Müdürlüğü. https://www.tarimorman.gov.tr/TRGM
  • Tselka, I., Krassakis, P., Rentzelos, A., Koukouzas, N. & Parcharidis, I. (2021). Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece. Remote Sens., 13, 5160. DOI: 10.3390/rs13245160
  • Tüfekçioğlu, M. & Yavuz, M. (2016). Yusufeli mikro havzasında (Artvin) yüzey erozyonu toprak kaybının tahmin edilmesi ve erozyon risk haritasının oluşturulması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 17(2), 188-199. DOI: 10.17474/acuofd.47342
  • Valkanou, K., Karymbalis, E., Bathrellos, G., Skilodimou, H., Tsanakas, K., Papanastassiou, D. & Gaki-Papanastassiou, K. (2022). Soil Loss Potential Assessment for Natural and Post-Fire Conditions in Evia Island, Greece. Geosciences, 12, 367. DOI: 10.3390/geosciences12100367
  • Vijith, H., Seling, L.W. & Dodge-Wan, D. (2018). Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environ. Dev. Sustain., 20, 1365-1384. DOI: 10.1007/s10668-017-9946-4
  • Weninger, T., Filipović, V., Mešić, M., Clothier, B. & Filipović, L. (2019). Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma, 338, 187-196. DOI: 10.1016/j.geoderma.2018.12.008
  • Wischmeier, W.H. & Smith, D.D. (1978). Predicting Rainfall Erosion Losses, a Guide to Conservation Planning; Agriculture Handbook No. 537; US Department of Agriculture, Science and Education Administration: Washington, DC, USA.
  • Wittenberg, L., van der Wal, H., Keesstra, S. & Tessler, N. (2020). Post-fire management treatment effects on soil properties and burned are restoration in a wildland-urban interface, Haifa fire case study. Science of the Total Environment, 716, 135190. DOI: 10.1016/j.scitotenv.2019.135190
  • Yazıcı, N., Babalık, A.A. & Dursun, İ. (2018). Bazı tıbbi ve aromatik bitkilerin erozyon kontrolünde kullanımı. V. Uluslararası Multidisipliner Çalışmaları Kongresi, Kasım 2-3, Antalya, 417- 424.
  • Yuksek, F. & Yuksek, T. (2015). Growth performance of Sainfoin and its effects on the runoff, soil loss and sediment concentration in a semi-arid region of Türkiye. Catena, 133, 309-317. DOI: 10.1016/j.catena.2015.05.018
  • Yuksel, A., Gundogan, R. & Akay, A.E. (2008). Using the Remote Sensing and GIS Technology for Erosion Risk Mapping of Kartalkaya Dam Watershed in Kahramanmaras, Türkiye. Sensors, 8, 4851-4865. DOI: 10.3390/s8084851
  • Yüksek, T., Özçelik, A.E. & Verep, B. (2020). Determination of Some Basin Characteristics and Distribution of Lands According to Physiographic Features of Fırtına River Basin Using Geographical Information Systems. J. Anatolian Env. and Anim. Sciences, 5(3), 439-449.
  • Yüksek, T. (2009). Effects of land use management on surface soil properties, erosion indices and green tea yield in humid Blacksea region. Fresenius Envir. Bull., 18(5b), 848-857.
  • Zald, H.S.J. & Dunn, C.J. (2018). Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol Appl., Jun; 28(4), 1068-1080. DOI: 10.1002/eap.1710. Epub 2018 Apr 26. PMID: 29698575.
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Endüstri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hurem Dutal 0000-0002-0944-6872

Erken Görünüm Tarihi 15 Eylül 2023
Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 22 Mayıs 2023
Kabul Tarihi 6 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dutal, H. (2023). Determining the Effect of Forest Fires on Soil Loss Using RUSLE and a New Approach: The Case of Çınarpınar Forestry Enterprise/Türkiye. Journal of Anatolian Environmental and Animal Sciences, 8(3), 435-448. https://doi.org/10.35229/jaes.1300671


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS