Research Article
BibTex RIS Cite

Asetik Anhidrit Alternatifi Olarak Trietilamonyum Hidrojen Sülfat Kullanılarak Kromenilyum-Siyanin Boya Sentezine Yeşil ve Pratik Bir Yaklaşım

Year 2025, Volume: 10 Issue: 6, 978 - 985, 30.11.2025
https://doi.org/10.35229/jaes.1737673

Abstract

Kromenilyum-siyanin boyaları, yakın kızılötesi (NIR) bölgesinde güçlü absorpsiyon ve emisyon özellikleri nedeniyle son yıllarda önemli ilgi görmüştür. Bu sebeple kromenilyum-siyanin boyaları, gelişmiş optik sensörler, biyolojik görüntüleme ajanları ve moleküler probların geliştirilmesi için oldukça umut verici adaylar haline gelmiştir. Bu tür boyaların hazırlanmasında geleneksel olarak kullanılan sentetik metodolojiler geleneksel olarak asetik anhidrit gibi reaksiyon ortamlarında ısıtmaya dayanır. Asetik anhidrit, temel olarak kondenzasyon reaksiyonlarını kolaylaştırmada etkili olsa da önemli sınırlamalar getirmektedir. Özellikle, asetik anhidrit oldukça uçucu, yanıcı ve toksiktir ve kullanımı sıkı güvenlik önlemleri gerektirir. Ayrıca, belirli ülkelerde tedarik edilmesine ilişkin düzenleyici kısıtlamalar olması sebebiyle, yeşil kimya ilkelerine uygun olarak daha sürdürülebilir ve çevre dostu alternatiflerinin belirlenmesine yönelik artan bir ihtiyaç durumu söz konusudur. Bu zorluklar ışığında, bu çalışma, yeni bir kromenilyum-siyanin boyasının sentezinde daha yeşil ve daha güvenli bir reaksiyon ortamı olarak trietilamonyum hidrojen sülfatın (TEAHS) kullanımını araştırmaktadır. Optimize edilmiş koşullar altında, hedef bileşik (CS2), 9-(2-karboksifenil)-6-(dietilamino)-1,2,3,4-tetrahidroksantilyum perkloratın (2) 2-(1,3,3-trimetilindolin-2-iliden)asetaldehit (3) ile TEAHS varlığında kondenzasyon reaksiyonu yoluyla başarıyla sentezlenmiştir. Elde edilen boya, karakteristik kromenilyum-siyanin optik özellikleri sergiler ve yapısı, gelişmiş iki boyutlu nükleer manyetik rezonans (2D NMR) spektroskopisi kullanılarak açıklanmıştır. Bildiğimiz kadarıyla, bu bileşiğin 2D NMR teknikleri ile tam yapısal karakterizasyonunu ayrıntılı olarak açıklayan literatürdeki ilk raporu temsil etmektedir ve böylece sürdürülebilir sentetik yollar aracılığıyla NIR-aktif floroforların tasarımına değerli görüler katmaktadır.

Project Number

46427

References

  • Alcay, Y., Ozdemir, E., Yildirim, M.S., Ertugral, U., Yavuz, O., Aribuga, H., Ozkilic, Y., Şenyurt Tuzun, N., Ozdabak Sert, A.B., Kok, F.N., & Yilmaz, I. (2023). A methionine biomolecule- modified chromenylium-cyanine fluorescent probe for the analysis of Hg2+ in the environment and living cells. Talanta, 259. DOI: 10.1016/j.talanta.2023.124471
  • Aribuga, H., Ertugral, U., Alcay, Y., Yavuz, O., Yildirim, M.S., Ozdemir, E., Kaya, K., Sert, A. B.O., Kok, F.N., Tuzun, N.Ş., & Yilmaz, I. (2023). A new Fe3+-selective, sensitive, and dual- channel turn-on probe based on rhodamine carrying thiophenecarboxaldehyde: Smartphone application and imaging in living cells. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 287. DOI: 10.1016/j.saa.2022.122060
  • Basan, V., Alcay, Y., Ozdemir, E., Gunduz, M. I., Kura, B., Tuzun, N. Ş., Cil, C., Kilic, A., & Yilmaz, I. (2025). Architecture of a novel NIR and switch- on fluorescent chemosensor based on mercapto propanehydrazide-functionalized chromenylium- cyanine for the quantification of mercury(II) in environment and living cells. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 329. DOI: 10.1016/j.saa.2024.125589
  • Cetin, D., Yavuz, O., Alcay, Y., Semih Yildirim, M., Kaplan, M., Aribuga, H., Ozdemir, E., Ertugral, U., & Yilmaz, I. (2023). Development of a new near-infrared, spectrophotometric, and colorimetric probe based on phthalocyanine containing mercaptoquinoline unit for discriminative and highly sensitive detection of Ag+, Cu2+, and Hg2+ ions. In Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy 297. DOI: 10.1016/j.saa.2023.122725
  • Cheng, Z., Zhu, H., Ji, H., Kong, L., Yuan, Z., & Meng, F. (2024). Enhanced Acetic Anhydride Detection Based on ZnO/La₂O₃ Nanoparticles With High Selectivity and Sensitivity. IEEE Transactions on Instrumentation and Measurement, 73, 1-8. DOI: 10.1109/TIM.2024.3396837
  • de Jesus, S.S., & Maciel Filho, R. (2022). Are ionic liquids eco-friendly? Renewable and Sustainable Energy Reviews, 157. DOI: 10.1016/j.rser.2021.112039
  • Ejder, N., Karaoglu, K., Levent, Z., Alcay, Y., Ozdemir, E., Yavuz, O., Kaya, K., Kopar, M., Tuzun, N.Ş., & Yilmaz, I. (2025). Colorimetric and fluorimetric sensing of trace amount of Hg2+ in real samples by a new rhodamine B-based Schiff base probe: Smartphone, living cell applications and DFT calculation. Journal of Molecular Structure, 1321. DOI: 10.1016/j.molstruc.2024.139687
  • Fahri, F., Bacha, K., Chiki, F. F., Mbakidi, J.-P., Panda, S., Bouquillon, S., & Fourmentin, S. (2020). Air pollution: New bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency. Environmental Chemistry Letters, 18(4), 1403-1411. DOI: 10.1007/s10311-020-01007-8
  • Kaplan, M., Yavuz, O., Ozdemir, E., Alcay, Y., Kaya, K., & Yilmaz, I. (2024). Architecture of Easy-to- Synthesize and Superior Probe Based on Aminoquinoline Appended Naphthoquinone: Instant and On-Site Cu2+ Ion Quantification in Real Samples and Unusual Crystal Structure and Logic Gate Operations. In Inorganic Chemistry 63(4), 2257-2267. DOI: 10.1021/acs.inorgchem.3c04229
  • Karaoglu, K. (2020). A new chromenylium-cyanine chemosensor for switch-ON near-infrared copper (II) sensing. Journal of Molecular Structure, 1205. DOI: 10.1016/j.molstruc.2019.127640
  • Karaoglu, K., Kaya, K., & Yilmaz, I. (2020). New Chromenylium-cyanine based dual channel chemosensors for copper and hypochlorite sensing. Dyes and Pigments, 180,. DOI: 10.1016/j.dyepig.2020.108445
  • Karimi-Jaberi, Z., Masoudi, B., Rahmani, A., & Alborzi, K. (2020). Triethylammonium Hydrogen Sulfate [Et3NH][HSO4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Coumarin Derivatives. Polycyclic Aromatic Compounds, 40(1), 99-107. DOI: 10.1080/10406638.2017.1363061
  • Kaur, G., Kumar, H., & Singla, M. (2022). Diverse applications of ionic liquids: A comprehensive review. Journal of Molecular Liquids, 351. DOI: 10.1016/j.molliq.2022.118556
  • Khatib, M., & Haick, H. (2022). Sensors for Volatile Organic Compounds. ACS Nano, 16(5), 7080- 7115. DOI: 10.1021/acsnano.1c10827
  • Nasirpour, N., Mohammadpourfard, M., & Zeinali Heris, S. (2020). Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chemical Engineering Research and Design, 160, 264–300. DOI: 10.1016/j.cherd.2020.06.006
  • Ozdemir, E., Alcay, Y., Yavuz, O., Yildirim, M.S., Aribuga, H., Ertugral, U., Kaya, K., & Yilmaz, I. (2023). Colorimetric and near-infrared spectrophotometric monitoring of bisulfite using glyoxal modified chromenylium-cyanine chemosensor: Smartphone and paper strip applications for on-site food and beverages control. Talanta 261. DOI: 10.1016/j.talanta.2023.124660
  • Rauber, D., Philippi, F., Becker, J., Zapp, J., Morgenstern, B., Kuttich, B., Kraus, T., Hempelmann, R., Hunt, P., Welton, T., & Kay, C. W. M. (2023). Anion and ether group influence in protic guanidinium ionic liquids. Physical Chemistry Chemical Physics, 25(8), 6436-6453. DOI: 10.1039/D2CP05724G
  • Reiß, M., Brietzke, A., Eickner, T., Stein, F., Villinger, A., Vogel, C., Kragl, U., & Jopp, S. (2020). Synthesis of novel carbohydrate based pyridinium ionic liquids and cytotoxicity of ionic liquids for mammalian cells. RSC Advances, 10(24), 14299- 14304. DOI: 10.1039/D0RA01370F
  • Skoronski, E., Fernandes, M., Malaret, F.J., & Hallett, J.P. (2020). Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Separation and Purification Technology, 248. DOI: 10.1016/j.seppur.2020.117069
  • Sugizaki, T., Takami, N., & Hoshina, K. (2023). Triethyl sulfonium bis(trifluoromethylsulfonyl)imide ionic liquids with highly concentrated LiFSI as electrolytes for Li metal batteries. Journal of Power Sources, 571. DOI: 10.1016/j.jpowsour.2023.233024
  • Tong, L., & Qian, Y. (2018). A NIR rhodamine fluorescent chemodosimeter specific for glutathione: Knoevenagel condensation, detection of intracellular glutathione and living cell imaging. Journal of Materials Chemistry B, 6(12), 1791–1798. DOI: 10.1039/c7tb03199h
  • Wang, Z., He, S., Nguyen, V., & Riley, K. E. (2020). Ionic Liquids as “Green Solvent and/or Electrolyte” for Energy Interface. Engineered Science, 11(15), 3-18.
  • Wei, Y., Cheng, D., Ren, T., Li, Y., Zeng, Z., & Yuan, L. (2016). Design of NIR Chromenylium- Cyanine Fluorophore Library for “Switch-ON” and Ratiometric Detection of Bio-Active Species In Vivo. Analytical Chemistry, 88(3), 1842-1849. DOI: 10.1021/acs.analchem.5b04169
  • Wu, T., Sun, T., Ren, Y., & Zhang, R. (2024). Molecular mechanism for the absorption of ketone volatile organic compounds by ionic liquids. Computational and Theoretical Chemistry, 1234. DOI: 10.1016/j.comptc.2024.114545
  • Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Ou-Yang, J., & Liu, J. (2016). Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88(19), 9746-9752. DOI: 10.1021/acs.analchem.6b02646
  • Yang, X., & Qian, Y. (2018). A NIR facile, cell- compatible fluorescent sensor for glutathione based on Michael addition induced cascade spirolactam opening and its application in hepatocellular carcinoma. Journal of Materials Chemistry B, 6(45), 7486-7494. DOI: 10.1039/C8TB02309C
  • Yao, S., Qian, Y., Qi, Z., Lu, C., & Cui, Y. (2017). A smart two-photon fluorescent platform based on desulfurization–cyclization: A phthalimide- rhodamine chemodosimeter for Hg2+ NIR emission at 746 nm and through-bond energy transfer. New Journal of Chemistry, 41(22), 13495-13503. DOI: 10.1039/C7NJ02814H
  • Yavuz, O., Kaplan, M., Ozdemir, E., Alcay, Y., Tuzun, N.Ş., & Yilmaz, I. (2025). A new phthalocyanine probe with superior analytical performance for visual and fluorometric detection of thiosulfate in real samples. Microchemical Journal, 210. DOI: 10.1016/j.microc.2025.112975
  • Yildirim, M. S., Alcay, Y., Ozdemir, E., Ertugral, U., Yavuz, O., Aribuga, H., Kaya, K., Ozkilic, Y., Tuzun, N. Ş., Sert, A. B. O., & Yilmaz, I. (2024). Molecular architecture of a novel indoline-fused chromenylium-cyanine probe carrying methionine biomolecule for ultrasensitive analyzing Hg2+ ion in real samples. Journal of Environmental Chemical Engineering, 12(6). DOI: 10.1016/j.jece.2024.114388
  • Yuan, L., Lin, W., Yang, Y., & Chen, H. (2012). A Unique Class of Near-Infrared Functional Fluorescent Dyes with Carboxylic-Acid- Modulated Fluorescence ON/OFF Switching: Rational Design, Synthesis, Optical Properties, Theoretical Calculations, and Applications for Fluorescence Imaging in Living Animals. Journal of the American Chemical Society, 134(2), 1200- 1211. DOI: 10.1021/ja209292b
  • Zhu, H., Yuan, Z., Shen, Y., Han, C., Ji, H., Mu, Z., & Meng, F. (2022). Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction. Sensors and Actuators B: Chemical, 373. DOI: 10.1016/j.snb.2022.132726

A Green and Practical Approach to Chromenylium–Cyanine Dye Synthesis Using Triethylammonium Hydrogen Sulfate as an Alternative to Acetic Anhydride

Year 2025, Volume: 10 Issue: 6, 978 - 985, 30.11.2025
https://doi.org/10.35229/jaes.1737673

Abstract

Chromenylium-cyanine dyes have attracted considerable attention in recent years due to their strong absorption and emission characteristics in the near-infrared (NIR) region, which make them highly promising candidates for the development of advanced optical sensors, bioimaging agents, and molecular probes. The synthetic methodologies traditionally employed for the preparation of such dyes typically rely on reaction media such as acetic anhydride. Although acetic anhydride is effective in facilitating key condensation reactions, it poses significant limitations. Specifically, acetic anhydride is highly volatile, flammable, and toxic, and its use requires strict safety precautions. Furthermore, regulatory restrictions on its availability in certain countries highlight the growing need to identify more sustainable and environmentally benign alternatives in accordance with the principles of green chemistry. In light of these challenges, the present study explores the use of triethylammonium hydrogen sulfate (TEAHS) as a greener and safer reaction medium in the synthesis of a novel chromenylium-cyanine dye. Under optimized conditions, the target compound (CS2) was successfully synthesized through the condensation reaction of 2 with 3 in the presence of TEAHS. The resulting dye exhibits characteristic chromenylium-cyanine optical properties, and its structure was unequivocally elucidated using advanced two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy for the first time in the literature.

Supporting Institution

Istanbul Technical University - Scientific Research Projects Coordination Unit

Project Number

46427

Thanks

I would like to express my sincere gratitude to Prof. Dr. Ismail Yılmaz and his research group for giving me the opportunity to work in their laboratory and for their valuable support.

References

  • Alcay, Y., Ozdemir, E., Yildirim, M.S., Ertugral, U., Yavuz, O., Aribuga, H., Ozkilic, Y., Şenyurt Tuzun, N., Ozdabak Sert, A.B., Kok, F.N., & Yilmaz, I. (2023). A methionine biomolecule- modified chromenylium-cyanine fluorescent probe for the analysis of Hg2+ in the environment and living cells. Talanta, 259. DOI: 10.1016/j.talanta.2023.124471
  • Aribuga, H., Ertugral, U., Alcay, Y., Yavuz, O., Yildirim, M.S., Ozdemir, E., Kaya, K., Sert, A. B.O., Kok, F.N., Tuzun, N.Ş., & Yilmaz, I. (2023). A new Fe3+-selective, sensitive, and dual- channel turn-on probe based on rhodamine carrying thiophenecarboxaldehyde: Smartphone application and imaging in living cells. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 287. DOI: 10.1016/j.saa.2022.122060
  • Basan, V., Alcay, Y., Ozdemir, E., Gunduz, M. I., Kura, B., Tuzun, N. Ş., Cil, C., Kilic, A., & Yilmaz, I. (2025). Architecture of a novel NIR and switch- on fluorescent chemosensor based on mercapto propanehydrazide-functionalized chromenylium- cyanine for the quantification of mercury(II) in environment and living cells. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 329. DOI: 10.1016/j.saa.2024.125589
  • Cetin, D., Yavuz, O., Alcay, Y., Semih Yildirim, M., Kaplan, M., Aribuga, H., Ozdemir, E., Ertugral, U., & Yilmaz, I. (2023). Development of a new near-infrared, spectrophotometric, and colorimetric probe based on phthalocyanine containing mercaptoquinoline unit for discriminative and highly sensitive detection of Ag+, Cu2+, and Hg2+ ions. In Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy 297. DOI: 10.1016/j.saa.2023.122725
  • Cheng, Z., Zhu, H., Ji, H., Kong, L., Yuan, Z., & Meng, F. (2024). Enhanced Acetic Anhydride Detection Based on ZnO/La₂O₃ Nanoparticles With High Selectivity and Sensitivity. IEEE Transactions on Instrumentation and Measurement, 73, 1-8. DOI: 10.1109/TIM.2024.3396837
  • de Jesus, S.S., & Maciel Filho, R. (2022). Are ionic liquids eco-friendly? Renewable and Sustainable Energy Reviews, 157. DOI: 10.1016/j.rser.2021.112039
  • Ejder, N., Karaoglu, K., Levent, Z., Alcay, Y., Ozdemir, E., Yavuz, O., Kaya, K., Kopar, M., Tuzun, N.Ş., & Yilmaz, I. (2025). Colorimetric and fluorimetric sensing of trace amount of Hg2+ in real samples by a new rhodamine B-based Schiff base probe: Smartphone, living cell applications and DFT calculation. Journal of Molecular Structure, 1321. DOI: 10.1016/j.molstruc.2024.139687
  • Fahri, F., Bacha, K., Chiki, F. F., Mbakidi, J.-P., Panda, S., Bouquillon, S., & Fourmentin, S. (2020). Air pollution: New bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency. Environmental Chemistry Letters, 18(4), 1403-1411. DOI: 10.1007/s10311-020-01007-8
  • Kaplan, M., Yavuz, O., Ozdemir, E., Alcay, Y., Kaya, K., & Yilmaz, I. (2024). Architecture of Easy-to- Synthesize and Superior Probe Based on Aminoquinoline Appended Naphthoquinone: Instant and On-Site Cu2+ Ion Quantification in Real Samples and Unusual Crystal Structure and Logic Gate Operations. In Inorganic Chemistry 63(4), 2257-2267. DOI: 10.1021/acs.inorgchem.3c04229
  • Karaoglu, K. (2020). A new chromenylium-cyanine chemosensor for switch-ON near-infrared copper (II) sensing. Journal of Molecular Structure, 1205. DOI: 10.1016/j.molstruc.2019.127640
  • Karaoglu, K., Kaya, K., & Yilmaz, I. (2020). New Chromenylium-cyanine based dual channel chemosensors for copper and hypochlorite sensing. Dyes and Pigments, 180,. DOI: 10.1016/j.dyepig.2020.108445
  • Karimi-Jaberi, Z., Masoudi, B., Rahmani, A., & Alborzi, K. (2020). Triethylammonium Hydrogen Sulfate [Et3NH][HSO4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Coumarin Derivatives. Polycyclic Aromatic Compounds, 40(1), 99-107. DOI: 10.1080/10406638.2017.1363061
  • Kaur, G., Kumar, H., & Singla, M. (2022). Diverse applications of ionic liquids: A comprehensive review. Journal of Molecular Liquids, 351. DOI: 10.1016/j.molliq.2022.118556
  • Khatib, M., & Haick, H. (2022). Sensors for Volatile Organic Compounds. ACS Nano, 16(5), 7080- 7115. DOI: 10.1021/acsnano.1c10827
  • Nasirpour, N., Mohammadpourfard, M., & Zeinali Heris, S. (2020). Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chemical Engineering Research and Design, 160, 264–300. DOI: 10.1016/j.cherd.2020.06.006
  • Ozdemir, E., Alcay, Y., Yavuz, O., Yildirim, M.S., Aribuga, H., Ertugral, U., Kaya, K., & Yilmaz, I. (2023). Colorimetric and near-infrared spectrophotometric monitoring of bisulfite using glyoxal modified chromenylium-cyanine chemosensor: Smartphone and paper strip applications for on-site food and beverages control. Talanta 261. DOI: 10.1016/j.talanta.2023.124660
  • Rauber, D., Philippi, F., Becker, J., Zapp, J., Morgenstern, B., Kuttich, B., Kraus, T., Hempelmann, R., Hunt, P., Welton, T., & Kay, C. W. M. (2023). Anion and ether group influence in protic guanidinium ionic liquids. Physical Chemistry Chemical Physics, 25(8), 6436-6453. DOI: 10.1039/D2CP05724G
  • Reiß, M., Brietzke, A., Eickner, T., Stein, F., Villinger, A., Vogel, C., Kragl, U., & Jopp, S. (2020). Synthesis of novel carbohydrate based pyridinium ionic liquids and cytotoxicity of ionic liquids for mammalian cells. RSC Advances, 10(24), 14299- 14304. DOI: 10.1039/D0RA01370F
  • Skoronski, E., Fernandes, M., Malaret, F.J., & Hallett, J.P. (2020). Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Separation and Purification Technology, 248. DOI: 10.1016/j.seppur.2020.117069
  • Sugizaki, T., Takami, N., & Hoshina, K. (2023). Triethyl sulfonium bis(trifluoromethylsulfonyl)imide ionic liquids with highly concentrated LiFSI as electrolytes for Li metal batteries. Journal of Power Sources, 571. DOI: 10.1016/j.jpowsour.2023.233024
  • Tong, L., & Qian, Y. (2018). A NIR rhodamine fluorescent chemodosimeter specific for glutathione: Knoevenagel condensation, detection of intracellular glutathione and living cell imaging. Journal of Materials Chemistry B, 6(12), 1791–1798. DOI: 10.1039/c7tb03199h
  • Wang, Z., He, S., Nguyen, V., & Riley, K. E. (2020). Ionic Liquids as “Green Solvent and/or Electrolyte” for Energy Interface. Engineered Science, 11(15), 3-18.
  • Wei, Y., Cheng, D., Ren, T., Li, Y., Zeng, Z., & Yuan, L. (2016). Design of NIR Chromenylium- Cyanine Fluorophore Library for “Switch-ON” and Ratiometric Detection of Bio-Active Species In Vivo. Analytical Chemistry, 88(3), 1842-1849. DOI: 10.1021/acs.analchem.5b04169
  • Wu, T., Sun, T., Ren, Y., & Zhang, R. (2024). Molecular mechanism for the absorption of ketone volatile organic compounds by ionic liquids. Computational and Theoretical Chemistry, 1234. DOI: 10.1016/j.comptc.2024.114545
  • Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Ou-Yang, J., & Liu, J. (2016). Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88(19), 9746-9752. DOI: 10.1021/acs.analchem.6b02646
  • Yang, X., & Qian, Y. (2018). A NIR facile, cell- compatible fluorescent sensor for glutathione based on Michael addition induced cascade spirolactam opening and its application in hepatocellular carcinoma. Journal of Materials Chemistry B, 6(45), 7486-7494. DOI: 10.1039/C8TB02309C
  • Yao, S., Qian, Y., Qi, Z., Lu, C., & Cui, Y. (2017). A smart two-photon fluorescent platform based on desulfurization–cyclization: A phthalimide- rhodamine chemodosimeter for Hg2+ NIR emission at 746 nm and through-bond energy transfer. New Journal of Chemistry, 41(22), 13495-13503. DOI: 10.1039/C7NJ02814H
  • Yavuz, O., Kaplan, M., Ozdemir, E., Alcay, Y., Tuzun, N.Ş., & Yilmaz, I. (2025). A new phthalocyanine probe with superior analytical performance for visual and fluorometric detection of thiosulfate in real samples. Microchemical Journal, 210. DOI: 10.1016/j.microc.2025.112975
  • Yildirim, M. S., Alcay, Y., Ozdemir, E., Ertugral, U., Yavuz, O., Aribuga, H., Kaya, K., Ozkilic, Y., Tuzun, N. Ş., Sert, A. B. O., & Yilmaz, I. (2024). Molecular architecture of a novel indoline-fused chromenylium-cyanine probe carrying methionine biomolecule for ultrasensitive analyzing Hg2+ ion in real samples. Journal of Environmental Chemical Engineering, 12(6). DOI: 10.1016/j.jece.2024.114388
  • Yuan, L., Lin, W., Yang, Y., & Chen, H. (2012). A Unique Class of Near-Infrared Functional Fluorescent Dyes with Carboxylic-Acid- Modulated Fluorescence ON/OFF Switching: Rational Design, Synthesis, Optical Properties, Theoretical Calculations, and Applications for Fluorescence Imaging in Living Animals. Journal of the American Chemical Society, 134(2), 1200- 1211. DOI: 10.1021/ja209292b
  • Zhu, H., Yuan, Z., Shen, Y., Han, C., Ji, H., Mu, Z., & Meng, F. (2022). Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction. Sensors and Actuators B: Chemical, 373. DOI: 10.1016/j.snb.2022.132726
There are 31 citations in total.

Details

Primary Language English
Subjects Environmental Management (Other)
Journal Section Research Article
Authors

Yusuf Alçay 0000-0003-4948-7609

Project Number 46427
Submission Date July 8, 2025
Acceptance Date November 21, 2025
Early Pub Date November 30, 2025
Publication Date November 30, 2025
Published in Issue Year 2025 Volume: 10 Issue: 6

Cite

APA Alçay, Y. (2025). A Green and Practical Approach to Chromenylium–Cyanine Dye Synthesis Using Triethylammonium Hydrogen Sulfate as an Alternative to Acetic Anhydride. Journal of Anatolian Environmental and Animal Sciences, 10(6), 978-985. https://doi.org/10.35229/jaes.1737673


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS