Research Article
BibTex RIS Cite

Evaluation of the agricultural geometallic impact of the potential use of vermicompost by multidimensional statistical analysis

Year 2025, Volume: 10 Issue: 6, 932 - 945, 30.11.2025
https://doi.org/10.35229/jaes.1778022

Abstract

It is widely accepted that earthworms play a pivotal role in the modulation of soil nutrient dynamics and the conversion of organic matter. This research focused on examining the toxic effect of reusing sea lettuce-added vermicompost on agricultural yield through multidimensional statistical analysis. Different doses of sea lettuce collected from the Black Sea coast and local farm manure were composted and their chemically effects on agricultural productivity were investigated. Metallic enrichment levels were used to assess the outcomes. The study evaluated the impact of vermicompost on enhancing the yield of local cucumber plants, utilising them as bioassay material. Statistically significant differences were found in some parameters of soil analysis at the end of the experiment. The EF (enrichment factor) values for Zn in G3, G4, and G5 achieved extremely high enrichment levels of 42.92, 26.25, and 29.36, respectively. When the EF values computed in each group for the vermicompost set are analysed, considerable enrichment was noted for Cu as G3 (25.81) and G4 (13.07). In particular, when the organic matter content in G5 was lower compared to other groups and when examined in terms of metallic enrichment, it was observed that vermicompost application increased agricultural productivity and the yield increased rapidly with increasing U. Lactuca dose.

Ethical Statement

The study complied with research and publication ethics. It does not require Ethics Committee Approval.

Supporting Institution

Giresun University

Project Number

FEN-BAP-C-301221-05

Thanks

We would like to thank Giresun University BAP coordinatorship for the project support provided for this study.

References

  • Abacıoğlu, E., Yatgın, S., Tokel, E., & Yücesoy, P. (2020). Vermicompost production and its importance in plant nutrition. Bartın University International Journal of Natural and Applied Sciences, 3(1), 1-10.
  • Adiloğlu, A., Açikgöz, F.E., Adiloğlu, S., & Solmaz, Y. (2016). The effect of increasing amounts of aquaculture waste application on the contents of some macro and micronutrients in lettuce (Lactuca sativa L. var. crispa). Journal of Tekirdağ Faculty of Agriculture, 13(2), 96-101.
  • Aira, M., Gómez-Roel, A., & Domínguez, J. (2024). Taxonomic and functional dynamics of bacterial communities during drift seaweed vermicomposting. Microorganisms, 13(1), 30.
  • Akyurt, İ., Şahin, Y., & Koç, H. (2011). Evaluation of sea lettuce (Ulva sp.) as liquid organic fertilizer. Black Sea Journal of Science and Technology, 2(2), 55-62.
  • Alak, H.C., & Müftüoğlu, N.M. (2014). Effect of humic acid applications on available potassium. ÇOMÜ Journal of the Faculty of Agriculture, 2(2), 61-66.
  • Ammaturo, C., Pacheco, D., Cotas, J., Formisano, L., Ciriello, M., Pereira, L., & Bahcevandziev, K. (2023). Use of Chlorella vulgaris and Ulva lactuca as Biostimulant on Lettuce. Applied Sciences, 13(16), 9046. DOI: 10.3390/app13169046
  • Ananthavalli, R., Ramadas, V., Paul, J.A.J., Selvi, B.K., & Karmegam, N. (2019). Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresource technology, 275, 394-401. DOI: 10.1016/j.biortech.2018.12.091
  • Ananthi, K.J., Sornalakshmi, V., & Kumar, V. (2021). Effect of Ulva lactuca seaweed liquid fertilizer on drought stressed Vigna unguiculata. Annals of the Romanian Society for Cell Biology, 12968-12981. Barley, K.P., (1961). Plant nutrition levels of vermicast. Advences in Agronomy, 13, 251.
  • Basco, M., Bisen, K., Keswani, C., & Singh, H. (2017). Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere, 8, 467-483. DOI: 10.5943/mycosphere/8/3/8
  • Bender, D., Erdal, İ., Dengiz, O., Gürbüz, M., & Tarakçıoğlu, C., (1998). Effects of different organic materials on some physical properties of a clay soil. International Symposium on Arid Region Soil. International Agrohydrology Research And Training Center, 506-510.
  • Bolat, İ., & Kara, Ö. (2017). Plant nutrients: Sources, functions, deficiencies and excesses. Journal of Bartın Forest Faculty, 19(1), 218-228.
  • Cheng, J., & Wong, M. H. (2002). Effects of earthworms on Zn fractionation in soils. Biology and Fertility of Soils, 36, 72-78. DOI: 10.1007/s00374-002- 0507-z
  • Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M.A., & Türkmen, A. (2022). Integrated spatial distribution and multivariate statistical analysis for assessment of ecotoxicological and health risks of sediment metal contamination, Ömerli Dam (Istanbul, Turkey). Water, Air, & Soil Pollution, 233(6), 199.
  • Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M.A., Alkaya, S., & Türkmen, A. (2025). Spatial distribution of health risk assessment of a drinking water reservoir exposed to urban agglomeration and industrial lead contamination in Istanbul, Türkiye. Water Environment Research, 97(2), DOI: 10.1002/wer.70013
  • Çakır Ünal, A. (2019). The effects of zeolite and sea lettuce compost mixture on the development of bean plant. Master's Thesis, Giresun University, Graduate School of Science and Technology.
  • Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.-L., & Jouquet, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of the Total Environment, 514, 147-154. DOI: 10.1016/j.scitotenv.2015.02.005
  • Doube, B.M. (1998). Life in a complex community: functional interactions between earthworms, organic matter, microorganisms, and plants. Earthworm Ecology, 179-211.
  • Domínguez, J., Velando, A., Aira, M., & Monroy, F. (2003). Uniparental reproduction of Eisenia fetida and E. andrei (Oligochaeta: Lumbricidae): evidence of self-insemination: The 7th international symposium on earthworm ecology· Cardiff· Wales·2002. Pedobiologia, 47(5-6), 530- 534. DOI: 10.1078/0031-4056-00224
  • Durukan, H., Demirbas, A., & Turkekul, I. (2020). Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communications in Soil Science and Plant Analysis, 51(21), 2735-2745.
  • Francki, R.I.B. (1960). Studies in manurial values of seaweeds I: Effects of Pachymenia himantophora and Durvillea antarctica meals on plant growth. Plant and Soil, 12(4), 297-310. DOI: 10.1007/BF02232987
  • Ghannad, M., Ashraf, S., & Alipour, Z.T. (2014). Combined effects of zeolite, humic acid and potassium sulphate on yield and qualitative characters of potato (Solanum tuberosum L.). Intl. J. Farm Alli. Sci., 3(6), 669-674.
  • Gogoi, A., Biswas, S., Bora, J., Bhattacharya, S.S., & Kumar, M. (2015). Effect of vermicomposting on copper and zinc removal in activated sludge with special emphasis on temporal variation. Ecohydrol. Hydrobiol., 15, 101-107.
  • Goswami, L., Pratihar, S., Dasgupta, S., Bhattacharyya, P., Mudoi, P., Bora, J., Bhattacharya, S.S., & Kim, K.H. (2016). Exploring metal detoxification and accumulation potential during vermicomposting of tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci. Rep., 6, 30402.
  • Goswami, L., Pratihar, S., Dasgupta, S., Bhattacharyya, P., Mudoi, P., Bora,, J., Bhattacharya, S.S., & Kim, K.H. (2016). Exploring metal detoxification and accumulation potential during vermicomposting of tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci. Rep., 6, 30402
  • Göksu, G.A., & Kuzucu, C.Ö. (2017). The effect of different doses of vermicompost applications on yield and some quality parameters in watermelon (Citrullus lanatus Thunb cv. Crimson Sweet). Journal of Çanakkale Onsekiz Mart University, Institute of Science and Technology, 3(2), 48-58. DOI: 10.28979/comufbed.344546
  • Hallam, J., Berdeni, D., Grayson, R., Guest, E.J., et al. (2020) Effect of earthworms on soil physicohydraulic and chemical properties, herbage production, and wheat growth on arable land converted to ley. Science of The Total Environment, 713, 136491. DOI: 10.1016/j.scitotenv.2019.136491
  • He, J., Ji, Z., Wang, Q., Liu, C., & Zhou, Y (2016). Effect of Cu and Pb pollution on the growth and antionxidant enzyme activity of Suaeda heteroptera. Ecol. Eng., 87, 102-109.
  • Hernández-Herrera, R.M., Santacruz-Ruvalcaba, F., Ruiz-López, M.A., Norrie, J., & Hernández- Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26, 619-628. DOI: 10.1007/s10811-013-0078-4
  • Hınıslı, N., (2014). Determination of the effect of vermicompost fertilizer on the development of curly crop and comparison with some other organic source fertilizers. Master's Thesis, Namık Kemal University Institute of Science and Technology, Department of Soil Science and Plant Nutrition, Tekirdağ.
  • Hoehne, L., de Lima, C.V.S., Martini, M.C., Altmayer, T., Brietzke, D.T., Finatto, J., Gonçalves, T.E., & Granada, C.E. (2016). Addition of vermicompost to heavy metal-contaminated soil ıncreases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water, Air and Soil Pollution, 227, 443. DOI: 10.1007/s11270-016-3142-2
  • Iqbal, A., Chen, X., Khan, R., Zaman, M., Khan, A.H., Kiedrzyński, M., Ebaid, M., Alrefaei, A.F., Lamlom, S.F., Tang, X., & Zeeshan, M. (2024). Vermicompost application improves leaf physiological activity, 2-acetyl-1-pyrroline, and grain yield of fragrant rice through efficient nitrogen assimilation under Cd stress. Frontiers in Plant Science, 15, 1481372.
  • Jadia, C.D., & Fulekar, M.H. (2008). Vermicomposting of vegetable waste: A bio-physicochemical process based on hydrooperating bioreactor. African Journal of Biotechonology, 7, 3726-3733.
  • Kalipci, E., Cüce, H., Ustaoğlu, F., Dereli, M.A., & Türkmen, M. (2023). Toxicological health risk analysis of hazardous trace elements accumulation in the edible fish species of the Black Sea in Türkiye using multivariate statistical and spatial assessment. Environmental Toxicology and Pharmacology, 97, 104028.
  • Karagöz, F.P., Dursun, A., Tekiner, N., Kul, R., & Kotan, R. (2019). Efficacy of vermicompost and/or plant growth promoting bacteria on the plant growth and development in gladiolus. Ornamental Horticulture, 25, 180-188. DOI: 10.14295/oh.v25i2.2023
  • Kocaman, A., İnci, Y., Kıtır, N., Turan, M., Argın, S., Yıldırım, E., Giray, G., Ersoy, N., Güneş, A., Katırcıoğlu, H., Gürkan, B., Bilgili, A.V., Aydemir, E.Ö., & Akça, M. (2024). The effect of novel biotechnological vermicompost on tea yield, plant nutrient content, antioxidants, amino acids, and organic acids as an alternative to chemical fertilizers for sustainability. BMC Plant Biology, 24(1), 868.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019. DOI: 10.1016/j.chemosphere.2008.04.016
  • Lazcano, C., Revilla, P., Malvar, R.A., & Domínguez, J. (2011). Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost. Journal of the Science of Food and Agriculture, 91(7), 1244-1253.
  • Lindsay, W.L. & Norvell, W.A. (1978). Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421- 428. DOI: 10.2136/sssaj1978.03615995004200030009x
  • Lv, B., Xing, M., & Yang, J. (2016). Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresource Technology, 209, 397-401.
  • Ma, Y., Dickinson, N.M., & Wong, M.H. (2002). Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biology and Fertility of Soils, 36, 79- 86. DOI: 10.1007/s00374-002-0506-0
  • Mathur, C., Rai, S., Sase, N., Krish, S., & Jayasri, M.A. (2015). Enteromorpha intestinalis derived seaweed liquid fertilizers as prospective biostimulant for Glycine max. Brazilian Archives of Biology and Technology, 58, 813-820. DOI: 10.1590/S1516-89132015060304
  • Mohee, R., & Soobhany, N. (2014). Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present. Resources, Conservation and Recycling, 92, 206- 213.
  • Muscolo, A., Panuccio, M.R., Abenavoli, M.R., Concheri, G., & Nardi, S. (1996). Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota α II cells. Biology and Fertility of Soils, 22, 83-88. DOI: 10.1007/BF00384437
  • Nadana, G.R.V., Rajesh, C., Kavitha, A., Sivakumar, P., Sridevi, G., & Palanichelvam, K. (2020). Induction of growth and defense mechanism in rice plants towards fungal pathogen by eco- friendly coelomic fluid of earthworm. Environmental Technology & Innovation, 19, 101011. DOI: 10.1016/j.eti.2020.101011
  • Najafi-Ghiri, M. (2014). Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil and Water Res., 9, 31- 37.
  • Nieto-Cantero, J., García-López, A.M., Recena, R., Quintero, J.M., & Delgado, A. (2025). Recycling manure as vermicompost: Assessing phosphorus fertilizer efficiency and effects on soil health under different soil management. Journal of Soil Science and Plant Nutrition, 1-16.
  • Özberk, E., Jankola, W.A., Vecchiarelli, M., & Krysa, B.D. (1995). Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy, 39(1-3), 49-52. DOI: 10.1016/0304-386X(95)00047-K
  • Pant, A., Radovich, T.J., Hue, N.V., Talcott, S.T., & Krenek, K.A. (2009) Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical ertilizer. Journal of the Science of Food Agriculture, 89, 2383-2392. DOI: 10.1002/jsfa.3732
  • Ramazanoğlu, E. (2024). Effects of vermicompost application on plant growth and soil enzyme activity in wheat (Triticum aestivum L.) monitored by thermal imaging. Cogent Food & Agriculture, 10(1), 2373872. DOI: 10.1080/23311932.2024.2373872
  • Ramnarain, Y.I., Ori, L.Y.D.I.A., & Ansari, A.A. (2018). Effect of the use of vermicompost on the plant growth parameters of Pak Choi (Brassica rapa var. chinensis) and on the soil structure in Suriname. Journal of Global Agriculture and Ecology, 8(1), 8-15.
  • Rostami, R., Nabaei, A., & Eslami, A., (2009). Survey of optimal temperature and moisture for worms' growth and operating vermicompost production of food wastes. Health and environment, 1(2), 105-112.
  • Roya, S., Arunachalam, K., Dutta, B.K., & Arunachalam, A. (2010). Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology, 45, 78-84. DOI: 10.1016/j.apsoil.2010.02.004
  • Santana, N.A., Rabuscke, C.M., Soares, V.B., Soriani, H.H., Nicoloso, F.T., & Jacques, R.J.S. (2018). Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis. Environmental Science and Pollution Research, 25, 12663-12677.
  • Siddique, S., Ayub, G., Nawaz, Z., Zeb, S., Khan, F.S., Ahmad, N., ..., & Rauf, K. (2017). Enhancement of growth and productivity of cucumber (Cucumis sativus) through foliar application of calcium and magnesium. Pure and Applied Biology (PAB), 6(2), 402-411. DOI: 10.19045/bspab.2017.60040
  • Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource technology, 97(14), 1745-1751. DOI: 10.1016/j.biortech.2005.06.016
  • Solmaz, Y., Adiloğlu, S., Bellitürk, K., Adiloğlu, A., Zahmacıoğlu, A., & Kocabaş, A. (2017). Effect of the various doses of vermicompost implementation on some heavy metal contents (Cr, Co, Cd, Ni, Pb) of cucumber (Cucumis sativus L.). Eurasian Journal of Forest Science, 5(1), 29-34.
  • Sönmez, S., & Özen, N. (2019). Changes in plant nutrient contents of soils due to different incubation periods and vermicompost applications. Mediterranean Agricultural Sciences, 32, 121- 125. DOI: 10.29136/mediterranean.562557
  • Sreenivasan, E. (2014). Handbook of Vermicomposting Technology. The Western India Plywoods Ltd, Kerala, India.
  • Su, A., Türkmen, M., & Cüce, H. (2024). The effect of vermicompost enriched with Ulva lactuca on germination of cucumber seeds. Karadeniz Fen Bilimleri Dergisi, 14(1), 326-338.
  • Şahin, S., Kartal, H., & Geboloğlu, N. (2024). The effect of vermicompost, mycorrhiza and fertiliser application doses on cucumber (Cucumis sativus) seedling development. ISPEC Journal of Agricultural Sciences, 8(3), 647-658. DOI: 10.5281/zenodo.12633752
  • Şimşek, T., Kalkancı, N., & Büyük, G. (2021). Determination of heavy metals pollution levels in agricultural soils: The case of Osmaniye. Mustafa Kemal University Journal of Agricultural Sciences, 26(1), 106-116.
  • Tchobanoglous, G., Theisen, H., & Vigil, S. (1993). Integrated solid waste management engineering principles and management issues. McGraw- Him, Inc, New York, p. 949.
  • Toor, M.D., Ay, A., Ullah, I., Demirkaya, S., Kızılkaya, R., Mihoub, A., Zia, A., Jamal, A., Gfhar, A.A., Serio, A.A., & Ronga, D. (2024). Vermicompost rate effects on soil fertility and morpho-physio- biochemical traits of lettuce. Horticulturae, 10(4), 418.
  • Türkmen, M., & Duran, K. (2021). The Effect of Brown Seaweed and Cattle Manure Combinations on The Properties of Eisenia fetida‘s Organic Fertilizer. Turkish Journal of Agriculture-Food Science and Technology, 9(6), 1070-1075.
  • Türkmen, M., & Su, A. (2019). The effect of sea lettuce (Ulva lactuca) liquid fertilizer and zeolite combinations on the development of cucumber (Cucumis sativus). Turkish Journal of Agriculture-Food Science and Technology, 7(7), 1021-1027. DOI: 10.24925/turjaf.v7i7.1021- 1027.2520
  • Upadhyay, P., Vaishampayan, A., & Jaiswal, S.K. (2020). Soil Pollution Caused by Agricultural Practices and Strategies to Manage It. In: Singh, P., Singh, S.K., Prasad, S.M. (eds) Plant Responses to Soil Pollution. Springer, Singapore. DOI: 10.1007/978-981-15-4964-9_7
  • Varol, M., Ustaoğlu, F., & Tokatlı, C. (2022). Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environmental Research, 205, 112478.
  • Wang, Y., Han, W., Wang, X., Chen, H., Zhu, F., Wang, X., & Lei, C. (2017). Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresource technology, 245, 411-418.
  • Yılmaz, O., Doğuş, İ., & Yılmaz, Z.S. (2017). Can red vermicompost be an alternative to chemical fertilizer? In 1st International Symposium on Multidisciplinary Studies and Innovative Technologies Proceedings Book, November (Vol. 2, No. 4).

Vermikompostun potansiyel kullanımının tarımsal jeometalik etkisinin çok boyutlu istatistiksel analizle değerlendirilmesi

Year 2025, Volume: 10 Issue: 6, 932 - 945, 30.11.2025
https://doi.org/10.35229/jaes.1778022

Abstract

Toprak solucanlarının toprak besin dinamiklerinin modülasyonunda ve organik maddenin dönüşümünde önemli bir rol oynadığı yaygın olarak kabul edilmektedir. Bu araştırma, deniz marulu eklenmiş vermikompostun tarımsal verime olan toksik etkisini çok boyutlu istatistiksel analiz yoluyla incelemeye odaklanmıştır. Karadeniz kıyılarından toplanan farklı dozlardaki deniz marulu ve yerel çiftlik gübresi kompostlanmış ve tarımsal verimlilik üzerindeki kimyasal etkileri araştırılmıştır. Sonuçları değerlendirmek için metalik zenginleştirme seviyeleri kullanılmıştır. Çalışmada, vermikompostun biyolojik deney materyali olarak kullanılarak yerel salatalık bitkilerinin verimini artırmadaki etkisi değerlendirilmiştir. Deneyin sonunda toprak analizinin bazı parametrelerinde istatistiksel olarak anlamlı farklılıklar bulunmuştur. G3, G4 ve G5'teki Zn için EF (zenginleştirme faktörü) değerleri sırasıyla 42,92, 26,25 ve 29,36'lık son derece yüksek zenginleştirme seviyelerine ulaşmıştır. Vermikompost seti için her grupta hesaplanan EF değerleri incelendiğinde, G3 (25,81) ve G4 (13,07)’te Cu için önemli bir zenginleşme olduğu görülmüştür. Özellikle G5'teki organik madde içeriğinin diğer gruplara kıyasla daha düşük olduğu ve metalik zenginleşme yönünden incelendiğinde, vermikompost uygulamasının tarımsal verimliliği artırdığı, U. Lactuca dozunun artmasıyla verimin hızla arttığı görülmüştür.

Ethical Statement

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur. Etik Kurul Onay Belgesi almayı gerektirecek bir kapsamı yoktur.

Supporting Institution

Giresun Üniversitesi

Project Number

FEN-BAP-C-301221-05

Thanks

Çalışmaya verdiği proje desteğinden dolayı Giresun Üniversitesi BAP koordinasyonuna teşekkür ederiz.

References

  • Abacıoğlu, E., Yatgın, S., Tokel, E., & Yücesoy, P. (2020). Vermicompost production and its importance in plant nutrition. Bartın University International Journal of Natural and Applied Sciences, 3(1), 1-10.
  • Adiloğlu, A., Açikgöz, F.E., Adiloğlu, S., & Solmaz, Y. (2016). The effect of increasing amounts of aquaculture waste application on the contents of some macro and micronutrients in lettuce (Lactuca sativa L. var. crispa). Journal of Tekirdağ Faculty of Agriculture, 13(2), 96-101.
  • Aira, M., Gómez-Roel, A., & Domínguez, J. (2024). Taxonomic and functional dynamics of bacterial communities during drift seaweed vermicomposting. Microorganisms, 13(1), 30.
  • Akyurt, İ., Şahin, Y., & Koç, H. (2011). Evaluation of sea lettuce (Ulva sp.) as liquid organic fertilizer. Black Sea Journal of Science and Technology, 2(2), 55-62.
  • Alak, H.C., & Müftüoğlu, N.M. (2014). Effect of humic acid applications on available potassium. ÇOMÜ Journal of the Faculty of Agriculture, 2(2), 61-66.
  • Ammaturo, C., Pacheco, D., Cotas, J., Formisano, L., Ciriello, M., Pereira, L., & Bahcevandziev, K. (2023). Use of Chlorella vulgaris and Ulva lactuca as Biostimulant on Lettuce. Applied Sciences, 13(16), 9046. DOI: 10.3390/app13169046
  • Ananthavalli, R., Ramadas, V., Paul, J.A.J., Selvi, B.K., & Karmegam, N. (2019). Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresource technology, 275, 394-401. DOI: 10.1016/j.biortech.2018.12.091
  • Ananthi, K.J., Sornalakshmi, V., & Kumar, V. (2021). Effect of Ulva lactuca seaweed liquid fertilizer on drought stressed Vigna unguiculata. Annals of the Romanian Society for Cell Biology, 12968-12981. Barley, K.P., (1961). Plant nutrition levels of vermicast. Advences in Agronomy, 13, 251.
  • Basco, M., Bisen, K., Keswani, C., & Singh, H. (2017). Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere, 8, 467-483. DOI: 10.5943/mycosphere/8/3/8
  • Bender, D., Erdal, İ., Dengiz, O., Gürbüz, M., & Tarakçıoğlu, C., (1998). Effects of different organic materials on some physical properties of a clay soil. International Symposium on Arid Region Soil. International Agrohydrology Research And Training Center, 506-510.
  • Bolat, İ., & Kara, Ö. (2017). Plant nutrients: Sources, functions, deficiencies and excesses. Journal of Bartın Forest Faculty, 19(1), 218-228.
  • Cheng, J., & Wong, M. H. (2002). Effects of earthworms on Zn fractionation in soils. Biology and Fertility of Soils, 36, 72-78. DOI: 10.1007/s00374-002- 0507-z
  • Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M.A., & Türkmen, A. (2022). Integrated spatial distribution and multivariate statistical analysis for assessment of ecotoxicological and health risks of sediment metal contamination, Ömerli Dam (Istanbul, Turkey). Water, Air, & Soil Pollution, 233(6), 199.
  • Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M.A., Alkaya, S., & Türkmen, A. (2025). Spatial distribution of health risk assessment of a drinking water reservoir exposed to urban agglomeration and industrial lead contamination in Istanbul, Türkiye. Water Environment Research, 97(2), DOI: 10.1002/wer.70013
  • Çakır Ünal, A. (2019). The effects of zeolite and sea lettuce compost mixture on the development of bean plant. Master's Thesis, Giresun University, Graduate School of Science and Technology.
  • Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.-L., & Jouquet, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of the Total Environment, 514, 147-154. DOI: 10.1016/j.scitotenv.2015.02.005
  • Doube, B.M. (1998). Life in a complex community: functional interactions between earthworms, organic matter, microorganisms, and plants. Earthworm Ecology, 179-211.
  • Domínguez, J., Velando, A., Aira, M., & Monroy, F. (2003). Uniparental reproduction of Eisenia fetida and E. andrei (Oligochaeta: Lumbricidae): evidence of self-insemination: The 7th international symposium on earthworm ecology· Cardiff· Wales·2002. Pedobiologia, 47(5-6), 530- 534. DOI: 10.1078/0031-4056-00224
  • Durukan, H., Demirbas, A., & Turkekul, I. (2020). Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communications in Soil Science and Plant Analysis, 51(21), 2735-2745.
  • Francki, R.I.B. (1960). Studies in manurial values of seaweeds I: Effects of Pachymenia himantophora and Durvillea antarctica meals on plant growth. Plant and Soil, 12(4), 297-310. DOI: 10.1007/BF02232987
  • Ghannad, M., Ashraf, S., & Alipour, Z.T. (2014). Combined effects of zeolite, humic acid and potassium sulphate on yield and qualitative characters of potato (Solanum tuberosum L.). Intl. J. Farm Alli. Sci., 3(6), 669-674.
  • Gogoi, A., Biswas, S., Bora, J., Bhattacharya, S.S., & Kumar, M. (2015). Effect of vermicomposting on copper and zinc removal in activated sludge with special emphasis on temporal variation. Ecohydrol. Hydrobiol., 15, 101-107.
  • Goswami, L., Pratihar, S., Dasgupta, S., Bhattacharyya, P., Mudoi, P., Bora, J., Bhattacharya, S.S., & Kim, K.H. (2016). Exploring metal detoxification and accumulation potential during vermicomposting of tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci. Rep., 6, 30402.
  • Goswami, L., Pratihar, S., Dasgupta, S., Bhattacharyya, P., Mudoi, P., Bora,, J., Bhattacharya, S.S., & Kim, K.H. (2016). Exploring metal detoxification and accumulation potential during vermicomposting of tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci. Rep., 6, 30402
  • Göksu, G.A., & Kuzucu, C.Ö. (2017). The effect of different doses of vermicompost applications on yield and some quality parameters in watermelon (Citrullus lanatus Thunb cv. Crimson Sweet). Journal of Çanakkale Onsekiz Mart University, Institute of Science and Technology, 3(2), 48-58. DOI: 10.28979/comufbed.344546
  • Hallam, J., Berdeni, D., Grayson, R., Guest, E.J., et al. (2020) Effect of earthworms on soil physicohydraulic and chemical properties, herbage production, and wheat growth on arable land converted to ley. Science of The Total Environment, 713, 136491. DOI: 10.1016/j.scitotenv.2019.136491
  • He, J., Ji, Z., Wang, Q., Liu, C., & Zhou, Y (2016). Effect of Cu and Pb pollution on the growth and antionxidant enzyme activity of Suaeda heteroptera. Ecol. Eng., 87, 102-109.
  • Hernández-Herrera, R.M., Santacruz-Ruvalcaba, F., Ruiz-López, M.A., Norrie, J., & Hernández- Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26, 619-628. DOI: 10.1007/s10811-013-0078-4
  • Hınıslı, N., (2014). Determination of the effect of vermicompost fertilizer on the development of curly crop and comparison with some other organic source fertilizers. Master's Thesis, Namık Kemal University Institute of Science and Technology, Department of Soil Science and Plant Nutrition, Tekirdağ.
  • Hoehne, L., de Lima, C.V.S., Martini, M.C., Altmayer, T., Brietzke, D.T., Finatto, J., Gonçalves, T.E., & Granada, C.E. (2016). Addition of vermicompost to heavy metal-contaminated soil ıncreases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water, Air and Soil Pollution, 227, 443. DOI: 10.1007/s11270-016-3142-2
  • Iqbal, A., Chen, X., Khan, R., Zaman, M., Khan, A.H., Kiedrzyński, M., Ebaid, M., Alrefaei, A.F., Lamlom, S.F., Tang, X., & Zeeshan, M. (2024). Vermicompost application improves leaf physiological activity, 2-acetyl-1-pyrroline, and grain yield of fragrant rice through efficient nitrogen assimilation under Cd stress. Frontiers in Plant Science, 15, 1481372.
  • Jadia, C.D., & Fulekar, M.H. (2008). Vermicomposting of vegetable waste: A bio-physicochemical process based on hydrooperating bioreactor. African Journal of Biotechonology, 7, 3726-3733.
  • Kalipci, E., Cüce, H., Ustaoğlu, F., Dereli, M.A., & Türkmen, M. (2023). Toxicological health risk analysis of hazardous trace elements accumulation in the edible fish species of the Black Sea in Türkiye using multivariate statistical and spatial assessment. Environmental Toxicology and Pharmacology, 97, 104028.
  • Karagöz, F.P., Dursun, A., Tekiner, N., Kul, R., & Kotan, R. (2019). Efficacy of vermicompost and/or plant growth promoting bacteria on the plant growth and development in gladiolus. Ornamental Horticulture, 25, 180-188. DOI: 10.14295/oh.v25i2.2023
  • Kocaman, A., İnci, Y., Kıtır, N., Turan, M., Argın, S., Yıldırım, E., Giray, G., Ersoy, N., Güneş, A., Katırcıoğlu, H., Gürkan, B., Bilgili, A.V., Aydemir, E.Ö., & Akça, M. (2024). The effect of novel biotechnological vermicompost on tea yield, plant nutrient content, antioxidants, amino acids, and organic acids as an alternative to chemical fertilizers for sustainability. BMC Plant Biology, 24(1), 868.
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019. DOI: 10.1016/j.chemosphere.2008.04.016
  • Lazcano, C., Revilla, P., Malvar, R.A., & Domínguez, J. (2011). Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost. Journal of the Science of Food and Agriculture, 91(7), 1244-1253.
  • Lindsay, W.L. & Norvell, W.A. (1978). Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421- 428. DOI: 10.2136/sssaj1978.03615995004200030009x
  • Lv, B., Xing, M., & Yang, J. (2016). Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresource Technology, 209, 397-401.
  • Ma, Y., Dickinson, N.M., & Wong, M.H. (2002). Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biology and Fertility of Soils, 36, 79- 86. DOI: 10.1007/s00374-002-0506-0
  • Mathur, C., Rai, S., Sase, N., Krish, S., & Jayasri, M.A. (2015). Enteromorpha intestinalis derived seaweed liquid fertilizers as prospective biostimulant for Glycine max. Brazilian Archives of Biology and Technology, 58, 813-820. DOI: 10.1590/S1516-89132015060304
  • Mohee, R., & Soobhany, N. (2014). Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present. Resources, Conservation and Recycling, 92, 206- 213.
  • Muscolo, A., Panuccio, M.R., Abenavoli, M.R., Concheri, G., & Nardi, S. (1996). Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota α II cells. Biology and Fertility of Soils, 22, 83-88. DOI: 10.1007/BF00384437
  • Nadana, G.R.V., Rajesh, C., Kavitha, A., Sivakumar, P., Sridevi, G., & Palanichelvam, K. (2020). Induction of growth and defense mechanism in rice plants towards fungal pathogen by eco- friendly coelomic fluid of earthworm. Environmental Technology & Innovation, 19, 101011. DOI: 10.1016/j.eti.2020.101011
  • Najafi-Ghiri, M. (2014). Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil and Water Res., 9, 31- 37.
  • Nieto-Cantero, J., García-López, A.M., Recena, R., Quintero, J.M., & Delgado, A. (2025). Recycling manure as vermicompost: Assessing phosphorus fertilizer efficiency and effects on soil health under different soil management. Journal of Soil Science and Plant Nutrition, 1-16.
  • Özberk, E., Jankola, W.A., Vecchiarelli, M., & Krysa, B.D. (1995). Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy, 39(1-3), 49-52. DOI: 10.1016/0304-386X(95)00047-K
  • Pant, A., Radovich, T.J., Hue, N.V., Talcott, S.T., & Krenek, K.A. (2009) Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical ertilizer. Journal of the Science of Food Agriculture, 89, 2383-2392. DOI: 10.1002/jsfa.3732
  • Ramazanoğlu, E. (2024). Effects of vermicompost application on plant growth and soil enzyme activity in wheat (Triticum aestivum L.) monitored by thermal imaging. Cogent Food & Agriculture, 10(1), 2373872. DOI: 10.1080/23311932.2024.2373872
  • Ramnarain, Y.I., Ori, L.Y.D.I.A., & Ansari, A.A. (2018). Effect of the use of vermicompost on the plant growth parameters of Pak Choi (Brassica rapa var. chinensis) and on the soil structure in Suriname. Journal of Global Agriculture and Ecology, 8(1), 8-15.
  • Rostami, R., Nabaei, A., & Eslami, A., (2009). Survey of optimal temperature and moisture for worms' growth and operating vermicompost production of food wastes. Health and environment, 1(2), 105-112.
  • Roya, S., Arunachalam, K., Dutta, B.K., & Arunachalam, A. (2010). Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology, 45, 78-84. DOI: 10.1016/j.apsoil.2010.02.004
  • Santana, N.A., Rabuscke, C.M., Soares, V.B., Soriani, H.H., Nicoloso, F.T., & Jacques, R.J.S. (2018). Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis. Environmental Science and Pollution Research, 25, 12663-12677.
  • Siddique, S., Ayub, G., Nawaz, Z., Zeb, S., Khan, F.S., Ahmad, N., ..., & Rauf, K. (2017). Enhancement of growth and productivity of cucumber (Cucumis sativus) through foliar application of calcium and magnesium. Pure and Applied Biology (PAB), 6(2), 402-411. DOI: 10.19045/bspab.2017.60040
  • Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource technology, 97(14), 1745-1751. DOI: 10.1016/j.biortech.2005.06.016
  • Solmaz, Y., Adiloğlu, S., Bellitürk, K., Adiloğlu, A., Zahmacıoğlu, A., & Kocabaş, A. (2017). Effect of the various doses of vermicompost implementation on some heavy metal contents (Cr, Co, Cd, Ni, Pb) of cucumber (Cucumis sativus L.). Eurasian Journal of Forest Science, 5(1), 29-34.
  • Sönmez, S., & Özen, N. (2019). Changes in plant nutrient contents of soils due to different incubation periods and vermicompost applications. Mediterranean Agricultural Sciences, 32, 121- 125. DOI: 10.29136/mediterranean.562557
  • Sreenivasan, E. (2014). Handbook of Vermicomposting Technology. The Western India Plywoods Ltd, Kerala, India.
  • Su, A., Türkmen, M., & Cüce, H. (2024). The effect of vermicompost enriched with Ulva lactuca on germination of cucumber seeds. Karadeniz Fen Bilimleri Dergisi, 14(1), 326-338.
  • Şahin, S., Kartal, H., & Geboloğlu, N. (2024). The effect of vermicompost, mycorrhiza and fertiliser application doses on cucumber (Cucumis sativus) seedling development. ISPEC Journal of Agricultural Sciences, 8(3), 647-658. DOI: 10.5281/zenodo.12633752
  • Şimşek, T., Kalkancı, N., & Büyük, G. (2021). Determination of heavy metals pollution levels in agricultural soils: The case of Osmaniye. Mustafa Kemal University Journal of Agricultural Sciences, 26(1), 106-116.
  • Tchobanoglous, G., Theisen, H., & Vigil, S. (1993). Integrated solid waste management engineering principles and management issues. McGraw- Him, Inc, New York, p. 949.
  • Toor, M.D., Ay, A., Ullah, I., Demirkaya, S., Kızılkaya, R., Mihoub, A., Zia, A., Jamal, A., Gfhar, A.A., Serio, A.A., & Ronga, D. (2024). Vermicompost rate effects on soil fertility and morpho-physio- biochemical traits of lettuce. Horticulturae, 10(4), 418.
  • Türkmen, M., & Duran, K. (2021). The Effect of Brown Seaweed and Cattle Manure Combinations on The Properties of Eisenia fetida‘s Organic Fertilizer. Turkish Journal of Agriculture-Food Science and Technology, 9(6), 1070-1075.
  • Türkmen, M., & Su, A. (2019). The effect of sea lettuce (Ulva lactuca) liquid fertilizer and zeolite combinations on the development of cucumber (Cucumis sativus). Turkish Journal of Agriculture-Food Science and Technology, 7(7), 1021-1027. DOI: 10.24925/turjaf.v7i7.1021- 1027.2520
  • Upadhyay, P., Vaishampayan, A., & Jaiswal, S.K. (2020). Soil Pollution Caused by Agricultural Practices and Strategies to Manage It. In: Singh, P., Singh, S.K., Prasad, S.M. (eds) Plant Responses to Soil Pollution. Springer, Singapore. DOI: 10.1007/978-981-15-4964-9_7
  • Varol, M., Ustaoğlu, F., & Tokatlı, C. (2022). Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environmental Research, 205, 112478.
  • Wang, Y., Han, W., Wang, X., Chen, H., Zhu, F., Wang, X., & Lei, C. (2017). Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresource technology, 245, 411-418.
  • Yılmaz, O., Doğuş, İ., & Yılmaz, Z.S. (2017). Can red vermicompost be an alternative to chemical fertilizer? In 1st International Symposium on Multidisciplinary Studies and Innovative Technologies Proceedings Book, November (Vol. 2, No. 4).
There are 69 citations in total.

Details

Primary Language English
Subjects Ecology (Other), Environmental Biogeochemistry
Journal Section Research Article
Authors

Ayşe Su 0000-0001-6792-5858

Mustafa Türkmen 0000-0001-6700-5947

Hüseyin Cüce 0000-0002-3590-681X

Project Number FEN-BAP-C-301221-05
Submission Date September 5, 2025
Acceptance Date October 31, 2025
Early Pub Date November 30, 2025
Publication Date November 30, 2025
Published in Issue Year 2025 Volume: 10 Issue: 6

Cite

APA Su, A., Türkmen, M., & Cüce, H. (2025). Evaluation of the agricultural geometallic impact of the potential use of vermicompost by multidimensional statistical analysis. Journal of Anatolian Environmental and Animal Sciences, 10(6), 932-945. https://doi.org/10.35229/jaes.1778022


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS