Araştırma Makalesi
BibTex RIS Kaynak Göster

Kurşuna Maruz Bırakılan Gammarus pulex’de Antioksidan Enzim Yanıtları

Yıl 2019, , 216 - 220, 31.08.2019
https://doi.org/10.35229/jaes.571909

Öz



Bu çalışmada, kurşuna
maruz bırakılan G. pulex'de
süperoksit dismutaz, katalaz ve glutatyon peroksidaz antioksidan enzimlerinin
aktivite yanıtlarının araştırılması amaçlanmaktadır.  G.
pulex
, 96 saat boyunca 10, 30, 50 µg/L kurşun içeren sentetik çözeltilere
maruz bırakılmıştır.  Süperoksit
dismutaz, katalaz ve glutatyon peroksidaz aktiviteleri ELISA kiti kullanılarak
belirlenmiştir.  Süperoksit dismutaz
aktivitelerindeki değişimler istatistiksel olarak anlamlı bulunmamıştır (P>0.05). Kurşuna maruz bırakıldıktan
sonra tüm uygulama gruplarında katalaz aktiviteleri azalmıştır (P<0.05).  Glutatyon peroksidaz aktiviteleri kurşun
maruziyetine bağlı olarak azalmıştır (P>0.05).  Bulgularımız, reaktif oksijen türleri
üreterek ve sülfhidril bağımlı antioksidan enzim aktivitelerini inhibe ederek
kurşunun oksidatif strese neden olabileceğini göstermektedir.  Sonuç olarak, antioksidan enzimlerdeki
değişiklikler, kurşunun çevresel risk değerlendirmesi için potansiyel olarak
hassas biyobelirteçler olarak kullanılabilir ve deşarj standartlarının
oluşturulmasına katkıda bulunabilir.




Kaynakça

  • Adonaylo, V.N. & Oteiza, P.I. (1999). Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology, 135, 77-85.
  • Ahmad, I., Hamid, T., Fatima, M., Chand, H.S., Jain, S.K., Athar, M. & Raisudd, S. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctatus bloch) is a biomarker of paper mill effluent exposure. Biochimica et Biophysica Acta, 1523, 37-48.
  • Blokhina, O., Virolainen, E. & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194. Carocci A., Catalano A., Lauria G., Sinicropi M.S. & Genchi G. (2016). Lead toxicity, antioxidant defense and environment, P. de Voogt (ed.). Reviews of Environmental Contamination and Toxicology, 238, XVI, 123p.
  • Chaurasia S.S. & Kar A. (1997a). Protective effects of vitamin E against lead induced deterioration of membrane associated type-1 iodothyronine 5’ monodeiodinase (5’D-I) activity in male mice. Toxicology, 124, 203-209.
  • Chaurasia S.S. & Kar A. (1997b). Influence of lead on type I iodothyromne 5’ monadeoidinase activity in male Mouse. Hormone and Metabolic Research, 29, 532-533. Chiba M., Shinohara A.K., Matsushita Watanabe H. & Inaba Y. (1996). Indices of lead exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. The Tohoku Journal of Experimental Medicine, 178, 49-62.
  • Courtois E., Marques M. & Barrientos A. (2003). Lead-induced downregulation of soluble guanylate cyclase in isolated rat aortic segments mediated by reactive oxygen species and cyclooxygenase- 2. Journals of the American Society of Nephrology, 14, 1464–1470.
  • Ercal N., Gürer-Orhan H. & Aykin-Burns N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 6, 529-539.
  • Farmand F., Ehdaie A., Roberts C.K. & Sindhu R.K. (2005). Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environmental Research, 98, 33–39.
  • Feldman R.G. & White R.F. (1992). Lead Neurotoxicity and Disorders of Learning. Journal of Child Neurology, 7, 354-359.
  • Flora S.J.S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2, 191–206.
  • Flora S.J.S., Pachauri V. & Saxena G. (2011). Arsenic, cadmium and lead. Reproductive and Developmental Toxicology, 33, 415–438.
  • Gaetani G.F., Kirkman H.N., Mangerini R. & Ferraris A.M. (1994). Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 84, 325-330.
  • Gidlow D.A. (2015). Lead toxicity. Occupational Medicine, 65, 348-356.
  • Gürer H. & Ercal N. (2000). Can antioxidant be beneficial in the treatment of lead poisoning?. Free Radical Biology & Medicine, 29, 927-945.
  • Güven K., Özbay C., Ünlü E. & Satar A. (1999). Acute lethal toxicity and accumulation of copper in Gammarus pulex (L.) (amphipoda). Turkish Journal of Biology, 23(4): 513-521.
  • Hsu P.C. & Guo Y.L. (2002). Antioxidant Nutrients and Lead Toxicity. Toxicology, 180, 33-44. Kasperczyk S., Birkner E., Kasperczyk A. & Zalejska-Fiolka J. (2004). Activity of superoxide dismutase and catalase in people protractedly exposed to lead compounds. Annals of Agricultural and Environmental Medicine, 11, 291-296.
  • Koller L.D. (1990). The immunotoxic effects of lead in lead exposed laboratory animals. Annals of the New York Academy of Sciences, 587, 160-167.
  • Latha M. & Pari L. (2004). Effect of an aqueous extract of scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes. Brazilian Journal of Medical and Biological Research, 37, 577-586.
  • Liebler D.C. & Reed D.J. (1997). Free-radical defense and repair mechanisms. Free Radicals in Toxicology, 141-171.
  • Michiels C., Raes M., Toussaint O. & Remacle J. (1994). Importance of Se–glutathione peroxidase, catalase and Cu/Zn SOD for cell survival against oxidative stress. Free Radical Biology & Medicine, 17, 235–248.
  • Monteiro D.A., Rantin F.T. & Kalinin A.L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19, 105-123.
  • Padmini E. & Rani M.U. (2009). Evaluation of oxidative stress biomarkers in hepatocytes of grey mullet inhabiting natural and polluted estuaries. Science of the Total Environment, 407, 4533-4541.
  • Patra R., Amiya C., Rautray K. & Swarup D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 9 p., doi:10.4061/2011/457327.
  • Ruas C.B.G., Carvalho C.S., Araújo H.S.S., Espíndola E.L.G. & Fernandes M.N. (2008). Oxidative stress biomarkers of exposure in the blood of three cichlid species from a polluted river. Ecotoxicology and Environmental Safety, 71, 86-93.
  • Schlenk D., Davis K.B. & Griffin B.R. (1999). Relationship between expression of hepatic metallothionein and sublethal stress in channel catfish following acute exposure to copper sulphate. Aquaculture, 177, 367-379.
  • Sharma S., Sharma V. & Pracheta P.R. (2011). Lead toxicity, oxidative damage and health implications. a review. International Journal of Biotechnology and Molecular Biology Research, 2(13): 215-221.
  • Soltanianejad K., Kebriaeezadeh A. & Minaiee B. (2003). Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain. Human & Experimental Toxicology, 22, 417-433.
  • Tagliari K.C., Vargas V.M.F., Zimiani K. & Cecchini R. (2004). Oxidative stress damage in the liver of fish and rats receiving an intraperitoneal injection of hexavalent chromium as evaluated by chemiluminescence. Environmental Toxicology and Pharmacology, 17, 149-157.
  • Vaziri N.D., Lin C.Y., Farmand F. & Sindhu R.K. (2003). Superoxide dismutase, catalase, glutathione peroxidase and nadph oxidase in lead induced hypertension. Kidney International, 63, 186-194.
  • Wang H.P., Qian S.Y., Schafer F.Q., Domann F.E., Oberley L.W. & Buettner G.R. (2001). Phospholipid hydroperoxide glutathione peroxidase protects against singlet oxygen-induced cell damage of photodynamic therapy. Free Radical Biology & Medicine, 30, 825-835.
  • Weeks J.M. & Rainbow P.S. (1992). The effect of salinity on copper and zinc concentrations in three species of talitrid amphopods (crustacea). Comparative Biochemistry and Physiology, 101C, 399–405.
  • Williams P.L. & Dusenbery D.B. (1990). Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 9, 1285–1290. Yokoyama K., Araki S., Muraka M., Morita Y., Katsuno N., Tanigawa T., Mori N., Yokota J., Ito A. & Sakata E. (1997). Subclinical vestibulo-cerebellar, anterior cerebellar lobe and spinocerebellar effects in lead workers in relation to current and past exposure. Neurotoxicology, 18(2): 371-380.
  • Yung L.M., Leung F.P., Yao X., Chen Z.Y. & Huang Y. (2006). Reactive oxygen species in vascular Wall. Cardiovascular & Haematological Disorders - Drug Targets, 6(1): 1–19.

Antioxidant Enzyme Responses to Lead Exposure of Gammarus pulex

Yıl 2019, , 216 - 220, 31.08.2019
https://doi.org/10.35229/jaes.571909

Öz

It is
aimed to investigate the activity response of the antioxidant enzymes
superoxide dismutase, catalase and glutathione peroxidase of G. pulex exposed to lead.  The
G. pulex were exposed synthetic
solutions containing 10, 30, 50 µg/L lead for 96 h.  Superoxide dismutase, catalase, glutathione
peroxidase activities were determined by using ELISA kit.  The differences in
superoxide dismutase activities were statistically insignificant (P>0.05).  Catalase decreased in all treatment groups
after lead exposure (P<0.05).  The glutathione peroxidase activities were
decreased depending on lead exposure (P>0.05).  Our
findings suggest that lead can induce oxidative stress by generating reactive
oxygen species and inhibiting sulfhydryl dependent antioxidant enzymes
activities.  In conclusion, alterations
in antioxidant enzymes may potentially be used as sensitive biomarkers for risk
assessment of lead in the environment and may contribute to the establishment
of discharge regulations.

Kaynakça

  • Adonaylo, V.N. & Oteiza, P.I. (1999). Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology, 135, 77-85.
  • Ahmad, I., Hamid, T., Fatima, M., Chand, H.S., Jain, S.K., Athar, M. & Raisudd, S. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctatus bloch) is a biomarker of paper mill effluent exposure. Biochimica et Biophysica Acta, 1523, 37-48.
  • Blokhina, O., Virolainen, E. & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194. Carocci A., Catalano A., Lauria G., Sinicropi M.S. & Genchi G. (2016). Lead toxicity, antioxidant defense and environment, P. de Voogt (ed.). Reviews of Environmental Contamination and Toxicology, 238, XVI, 123p.
  • Chaurasia S.S. & Kar A. (1997a). Protective effects of vitamin E against lead induced deterioration of membrane associated type-1 iodothyronine 5’ monodeiodinase (5’D-I) activity in male mice. Toxicology, 124, 203-209.
  • Chaurasia S.S. & Kar A. (1997b). Influence of lead on type I iodothyromne 5’ monadeoidinase activity in male Mouse. Hormone and Metabolic Research, 29, 532-533. Chiba M., Shinohara A.K., Matsushita Watanabe H. & Inaba Y. (1996). Indices of lead exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. The Tohoku Journal of Experimental Medicine, 178, 49-62.
  • Courtois E., Marques M. & Barrientos A. (2003). Lead-induced downregulation of soluble guanylate cyclase in isolated rat aortic segments mediated by reactive oxygen species and cyclooxygenase- 2. Journals of the American Society of Nephrology, 14, 1464–1470.
  • Ercal N., Gürer-Orhan H. & Aykin-Burns N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 6, 529-539.
  • Farmand F., Ehdaie A., Roberts C.K. & Sindhu R.K. (2005). Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environmental Research, 98, 33–39.
  • Feldman R.G. & White R.F. (1992). Lead Neurotoxicity and Disorders of Learning. Journal of Child Neurology, 7, 354-359.
  • Flora S.J.S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2, 191–206.
  • Flora S.J.S., Pachauri V. & Saxena G. (2011). Arsenic, cadmium and lead. Reproductive and Developmental Toxicology, 33, 415–438.
  • Gaetani G.F., Kirkman H.N., Mangerini R. & Ferraris A.M. (1994). Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 84, 325-330.
  • Gidlow D.A. (2015). Lead toxicity. Occupational Medicine, 65, 348-356.
  • Gürer H. & Ercal N. (2000). Can antioxidant be beneficial in the treatment of lead poisoning?. Free Radical Biology & Medicine, 29, 927-945.
  • Güven K., Özbay C., Ünlü E. & Satar A. (1999). Acute lethal toxicity and accumulation of copper in Gammarus pulex (L.) (amphipoda). Turkish Journal of Biology, 23(4): 513-521.
  • Hsu P.C. & Guo Y.L. (2002). Antioxidant Nutrients and Lead Toxicity. Toxicology, 180, 33-44. Kasperczyk S., Birkner E., Kasperczyk A. & Zalejska-Fiolka J. (2004). Activity of superoxide dismutase and catalase in people protractedly exposed to lead compounds. Annals of Agricultural and Environmental Medicine, 11, 291-296.
  • Koller L.D. (1990). The immunotoxic effects of lead in lead exposed laboratory animals. Annals of the New York Academy of Sciences, 587, 160-167.
  • Latha M. & Pari L. (2004). Effect of an aqueous extract of scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes. Brazilian Journal of Medical and Biological Research, 37, 577-586.
  • Liebler D.C. & Reed D.J. (1997). Free-radical defense and repair mechanisms. Free Radicals in Toxicology, 141-171.
  • Michiels C., Raes M., Toussaint O. & Remacle J. (1994). Importance of Se–glutathione peroxidase, catalase and Cu/Zn SOD for cell survival against oxidative stress. Free Radical Biology & Medicine, 17, 235–248.
  • Monteiro D.A., Rantin F.T. & Kalinin A.L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19, 105-123.
  • Padmini E. & Rani M.U. (2009). Evaluation of oxidative stress biomarkers in hepatocytes of grey mullet inhabiting natural and polluted estuaries. Science of the Total Environment, 407, 4533-4541.
  • Patra R., Amiya C., Rautray K. & Swarup D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 9 p., doi:10.4061/2011/457327.
  • Ruas C.B.G., Carvalho C.S., Araújo H.S.S., Espíndola E.L.G. & Fernandes M.N. (2008). Oxidative stress biomarkers of exposure in the blood of three cichlid species from a polluted river. Ecotoxicology and Environmental Safety, 71, 86-93.
  • Schlenk D., Davis K.B. & Griffin B.R. (1999). Relationship between expression of hepatic metallothionein and sublethal stress in channel catfish following acute exposure to copper sulphate. Aquaculture, 177, 367-379.
  • Sharma S., Sharma V. & Pracheta P.R. (2011). Lead toxicity, oxidative damage and health implications. a review. International Journal of Biotechnology and Molecular Biology Research, 2(13): 215-221.
  • Soltanianejad K., Kebriaeezadeh A. & Minaiee B. (2003). Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain. Human & Experimental Toxicology, 22, 417-433.
  • Tagliari K.C., Vargas V.M.F., Zimiani K. & Cecchini R. (2004). Oxidative stress damage in the liver of fish and rats receiving an intraperitoneal injection of hexavalent chromium as evaluated by chemiluminescence. Environmental Toxicology and Pharmacology, 17, 149-157.
  • Vaziri N.D., Lin C.Y., Farmand F. & Sindhu R.K. (2003). Superoxide dismutase, catalase, glutathione peroxidase and nadph oxidase in lead induced hypertension. Kidney International, 63, 186-194.
  • Wang H.P., Qian S.Y., Schafer F.Q., Domann F.E., Oberley L.W. & Buettner G.R. (2001). Phospholipid hydroperoxide glutathione peroxidase protects against singlet oxygen-induced cell damage of photodynamic therapy. Free Radical Biology & Medicine, 30, 825-835.
  • Weeks J.M. & Rainbow P.S. (1992). The effect of salinity on copper and zinc concentrations in three species of talitrid amphopods (crustacea). Comparative Biochemistry and Physiology, 101C, 399–405.
  • Williams P.L. & Dusenbery D.B. (1990). Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 9, 1285–1290. Yokoyama K., Araki S., Muraka M., Morita Y., Katsuno N., Tanigawa T., Mori N., Yokota J., Ito A. & Sakata E. (1997). Subclinical vestibulo-cerebellar, anterior cerebellar lobe and spinocerebellar effects in lead workers in relation to current and past exposure. Neurotoxicology, 18(2): 371-380.
  • Yung L.M., Leung F.P., Yao X., Chen Z.Y. & Huang Y. (2006). Reactive oxygen species in vascular Wall. Cardiovascular & Haematological Disorders - Drug Targets, 6(1): 1–19.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Osman Serdar Bu kişi benim 0000-0003-1744-8883

Nuran Cıkcıkoğlu Yıldırım 0000-0003-3975-6705

Şule Tatar 0000-0001-8962-0107

Numan Yıldırım 0000-0003-1109-8106

Yayımlanma Tarihi 31 Ağustos 2019
Gönderilme Tarihi 30 Mayıs 2019
Kabul Tarihi 18 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Serdar, O., Cıkcıkoğlu Yıldırım, N., Tatar, Ş., Yıldırım, N. (2019). Kurşuna Maruz Bırakılan Gammarus pulex’de Antioksidan Enzim Yanıtları. Journal of Anatolian Environmental and Animal Sciences, 4(2), 216-220. https://doi.org/10.35229/jaes.571909


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS