Biyopestisit Emamektin Benzoat’ın Toprak Azot Mineralizasyonuna Etkileri
Yıl 2019,
, 441 - 446, 30.12.2019
Şahin Cenkseven
,
Burak Koçak
,
Nacide Kızıldağ
Hüsniye Aka Sağlıker
,
Cengiz Darıcı
Öz
Pestisitler toprakta biyokimyasal süreçlerde görev alan
mikroorganizmaları ve aktivitelerini doğrudan etkileyerek toprak verimliliğini
bozmaktadır. Pestisitlerin topraktaki davranışlarını anlamak için toprak
mikroflorası ile topraktaki mikrobiyal olaylara etkisini araştırmak gereklidir.
Bu çalışmada, farklı sıcaklık ve nem koşullarında bir insektisit olan emamektin
benzoat’ın toprak azot mineralizasyonuna etkisi incelenmiştir. Bu amaçla,
emamektin benzoat’ın tavsiye edilen dozu (TD) ile 2 (TD×2) ve 4 (TD×4) katı
tarla kapasitesinin %40 (TK40), %60 (TK60) ve %80’i (TK80)
oranlarında nemlendirilen topraklara karıştırılarak 28°C ve 32°C’de 30 gün
inkübe edilmiştir. İnkübasyonun 3., 15. ve 30. günlerinde toprakların azot
mineralizasyonları ile oranları belirlenmiştir. Toprakların azot
mineralizasyonu emamektin benzoat uygulaması ile azalmıştır
(Kontrol>TD>TD×2>TD×4). Genel olarak kontrol uygulamasına göre
mineralizasyondaki azalışlar TD dozunda istatistiksel olarak önemsiz iken TD×2
ve TD×4 dozlarında önemli düzeydedir (P<0.05). İnkübasyon süresi
(3.gün<15.gün<30.gün), sıcaklık (28°C<32°C) ve nem (TK40<TK60<TK80)
arttıkça genelde toprak azot mineralizasyon oranları artmıştır. En düşük azot
mineralizasyon oranı %1.07 (TD×4, 28°C, TK40) iken en yüksek oran
%4.70 (Kontrol, TK80, 32°C) olarak belirlenmiştir. Emamektin benzoat,
her iki sıcaklıkta azot mineralizasyonuna benzer etki gösterirken düşük toprak
neminde olumsuz etkisi artmıştır. Sonuç olarak, farklı sıcaklık ve nem
koşullarında emamektin benzoat’ın TD×2 ve TD×4 uygulaması ile mineralizasyonda
rol oynayan mikroorganizmaların inhibisyonu sonucu azot mineralleşme oranının
azaldığı ve emamektinin inhibisyon etkisinin zamana bağlı olarak azalma
eğiliminde olduğu belirlenmiştir.
Destekleyen Kurum
Çukurova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
FBA-2016-7627
Teşekkür
Bu çalışma Çukurova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FBA-2016-7627 proje numarası ile desteklenmiştir.
Kaynakça
- Bouyoucos, G.S. (1951). A recalibration of the hydrometer for mohing mechanical analysis of soil. Agronomy Journal, 43, 434-438.
- Bremner, J.M. (1965). Total nitrogen. In: Black C.A. (Ed). Methods of soil analysis. Part 2, Agronomy 9, American Society of Agronomy Inc., Madison, Wisconsin, USA. 1149-1178p.
- Cáceres, T.P., He, W., Megharaj, M. & Naidu, R. (2009). Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils. Journal of Environmental Science and Health, Part B, 44(1), 13–17.
- Cheng, X.K., Liu, X.M., Wang, H.Y., Ji, X., Wang, K., Wei, M. & Qiao, K. (2015). Effect of emamectin benzoate on root–knot nematodes and tomato yield. Plos One, 10(10), e0141235. Doi:/10.1371/journal.pone.0141235.
- Chukwudebe, A.C., Atkins, R.H. & Wislocki, P.G. (1997). Metabolic fate of emamectin benzoate in soil. Journal of Agricultural and Food Chemistry, 45, 4137–4146.
- Celik, I. Gunal, H., Acar, M., Acır, N., Bereket Barut, Z. & Budak, M. (2019). Strategic tillage may sustain the benefits of long-term no-till in a vertisol under Mediterranean climate. Soil and Tillage Research, 185, 17-28.
- Das, A.C. & Mukherjee, D. (2000). Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchraqualf soil, Journal of Agricultural and Food Chemistry, 48, 3728–3732.
- Das, R., Das, S.J. & Das, A.C. (2016). Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil. European Journal of Soil Biology, 74, 9–15.
- Demiralay, I. (1993). Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları. No: 143, Erzurum, 78-89s.
- Domergue, M. (2001). Impact du réchauffement climatique sur le parcours phénologique d‘espèces/variétés dans la vallée du Rhône. Mémoire ESITPA, travail effectué à l‘unité CSE de l‘INRA d‘Avignon. Avignon-France, 72p.
- Duchaufour, P. (1970). Precis de Pedologie. Masson et Cie, Editeurs, Paris. 435-437p.
- Eser, F., Aka Sağlıker, H. & Darıcı, C. (2007). The effects of glyphosate isopropylamine and trifluralin on the carbon mineralization of olive tree soils. Turkish Journal of Agriculture and Forestry, 31, 297–302.
- European Food Safety Authority (EFSA). (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance [emamectin]. EFSA Journal, 10(11), 2955. Doi:10.2903/j.efsa.2012.2955.
- Gökçeoğlu, M. (1979). Bazı bitki organlarındaki azot, fosfor ve potasyumun bir vejetasyon periyodundaki değişimi. Doğa Tarım ve Ormancılık, 3, 192-199.
- Güneş, A. & Aktaş, M. (1992). Kireçli bir toprakta N-servin nitrifikasyon oranı ve azot kaybı üzerine etkisi. Doğa-Turkish Journal of Agricultural and Forestry, 16:501–506.
- Hussien, N.M., Shaheen, F.A.H., Shaker, M.H., Kady, M.M.I. & Negm, S.E. (2012). Field and laboratory studies for evaluating the toxıcity of some pesticides on soil microorganisms. Mansoura Journal of Plant Protection and Pathology, 3(7), 701–715.
- IPCC WG1, Climate Change (2007). The Physical Science Basis. Cambridge University Press, Cambridge- England.
- Jackson, M.L. (1958). Soil chemical analysis. Pretice-Hall, Inc. Englewood Cliffs, New Jersey, USA, 1498p.
- Kizildag, N., Sagliker, H., Cenkseven, S., Darici, C. & Kocak, B. (2014). Effects of imazamoxon soil carbon and nitrogen mineralization under Mediterranean climate. Turkish Journal of Agriculture and Forestry, 39, 334–339.
- Kirchsbaum, M.U.F. (2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming?. Biogeochemistry, 48, 21–51.
- Lemee, G. (1967). Investigations sur la mineralisation de l‘azote et son evolution annuelle dans des humus forestiers in situ. Oecologia Plantarum, 2, 285–324.
- Monkiedje, A. & Spiteller M. (2002). Effects of the phenylamide fungicides, mefenoxam and metalaxyl, on the biological properties of sandy loam and sandy clay soils, Biology and Fertility of Soils, 35: 393–398.
- Müjdeci, M., Sariyev, A. & Polat, V. (2005). Buğday (Triticum aestivum L.) veriminin matematiksel modellenmesi. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 11(4), 349–353.
- Roberts, T.R. & Hutson, D.H. (1999). Metabolic Pathways of Agrochemicals. The Royal Society of Chemistry, UK, 871p.
- Sağlam, M.T. (1979). Toprakta mevcut bazı azot formlarının tayini ve azot elverişlilik indeksleri, Atatürk Üniversitesi Ziraat Fakültesi. Erzurum, Türkiye.
- Schimel, J.P. &Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591–602.
- Schulz, L. (2010). Emamectin benzoate WG (A16955H) - Effects on the Activity of Soil Microflora (Nitrogen and Carbon Transformation Tests). BioChem Agrar, Gerichshain, Germany. Report no. 10 10 48 006 C/N. OECD 216, OECD 217.
- Ünver, M.C. (2007). Murat dağı (Uşak, Kütahya) alpin ve subalpin bölgesinin bazı bitki topluluklarında azot dönüşümleri üzerinde araştırmalar. Uludağ Üniversitesi Fen Bilimleri Enstitüsü. Bursa, Türkiye.
Effects of Biopesticide Emamectin Benzoate on Nitrogen Mineralization in Soil
Yıl 2019,
, 441 - 446, 30.12.2019
Şahin Cenkseven
,
Burak Koçak
,
Nacide Kızıldağ
Hüsniye Aka Sağlıker
,
Cengiz Darıcı
Öz
Insecticides can damage soil fertility by affecting
microorganisms that act in biochemical processes in soil and their activities
directly. Investigating the effects of insecticides on soil microflora and soil
microbial processes are essential to their behaviors in soil. Effect of
emamectin benzoate, an insecticide on soil nitrogen mineralization was
researched under different temperature and moisture conditions in this study. Soils
moistured with 40% (FC40), 60% (FC60) and 80% (FC80)
of their field capacity and mixed with recommended dose (RD), its 2 (RDx2) and
4 (RDx4) folds of emamectin benzoate were incubated for 30 days at 28°C and
32°C for this purpose. Soil nitrogen mineralizations and rates were determined
on 3th, 15th and 30th days of incubation.
Application of emamectin benzoate has decreased soil nitrogen mineralization
(Control>RD>RDx2>RDx4). In general, decreases in mineralization at RD
dose were statistically non–significant while differences between control and
RDx2 and RDx4 were found significant (P<0.05). Rates of soil nitrogen
mineralization were generally increased as incubation period (3th
day<15th day<30th day), temperature (28°C<32°C)
and moisture (FC40<FC60<FC80) increased.
Effects of emamectin benzoate were similar in nitrogen mineralization in both
temperatures while its negative effects have increased in low soil moisture. In
conclusion, it is determined that nitrogen mineralization rate has decreased by
inhibition of microorganisms through RD×2 ve RD×4 applications of emamectin
benzoate at different soil moisture contents and temperatures and this
inhibition effect of emamectin benzoate decreases as time progress.
Proje Numarası
FBA-2016-7627
Kaynakça
- Bouyoucos, G.S. (1951). A recalibration of the hydrometer for mohing mechanical analysis of soil. Agronomy Journal, 43, 434-438.
- Bremner, J.M. (1965). Total nitrogen. In: Black C.A. (Ed). Methods of soil analysis. Part 2, Agronomy 9, American Society of Agronomy Inc., Madison, Wisconsin, USA. 1149-1178p.
- Cáceres, T.P., He, W., Megharaj, M. & Naidu, R. (2009). Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils. Journal of Environmental Science and Health, Part B, 44(1), 13–17.
- Cheng, X.K., Liu, X.M., Wang, H.Y., Ji, X., Wang, K., Wei, M. & Qiao, K. (2015). Effect of emamectin benzoate on root–knot nematodes and tomato yield. Plos One, 10(10), e0141235. Doi:/10.1371/journal.pone.0141235.
- Chukwudebe, A.C., Atkins, R.H. & Wislocki, P.G. (1997). Metabolic fate of emamectin benzoate in soil. Journal of Agricultural and Food Chemistry, 45, 4137–4146.
- Celik, I. Gunal, H., Acar, M., Acır, N., Bereket Barut, Z. & Budak, M. (2019). Strategic tillage may sustain the benefits of long-term no-till in a vertisol under Mediterranean climate. Soil and Tillage Research, 185, 17-28.
- Das, A.C. & Mukherjee, D. (2000). Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchraqualf soil, Journal of Agricultural and Food Chemistry, 48, 3728–3732.
- Das, R., Das, S.J. & Das, A.C. (2016). Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil. European Journal of Soil Biology, 74, 9–15.
- Demiralay, I. (1993). Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları. No: 143, Erzurum, 78-89s.
- Domergue, M. (2001). Impact du réchauffement climatique sur le parcours phénologique d‘espèces/variétés dans la vallée du Rhône. Mémoire ESITPA, travail effectué à l‘unité CSE de l‘INRA d‘Avignon. Avignon-France, 72p.
- Duchaufour, P. (1970). Precis de Pedologie. Masson et Cie, Editeurs, Paris. 435-437p.
- Eser, F., Aka Sağlıker, H. & Darıcı, C. (2007). The effects of glyphosate isopropylamine and trifluralin on the carbon mineralization of olive tree soils. Turkish Journal of Agriculture and Forestry, 31, 297–302.
- European Food Safety Authority (EFSA). (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance [emamectin]. EFSA Journal, 10(11), 2955. Doi:10.2903/j.efsa.2012.2955.
- Gökçeoğlu, M. (1979). Bazı bitki organlarındaki azot, fosfor ve potasyumun bir vejetasyon periyodundaki değişimi. Doğa Tarım ve Ormancılık, 3, 192-199.
- Güneş, A. & Aktaş, M. (1992). Kireçli bir toprakta N-servin nitrifikasyon oranı ve azot kaybı üzerine etkisi. Doğa-Turkish Journal of Agricultural and Forestry, 16:501–506.
- Hussien, N.M., Shaheen, F.A.H., Shaker, M.H., Kady, M.M.I. & Negm, S.E. (2012). Field and laboratory studies for evaluating the toxıcity of some pesticides on soil microorganisms. Mansoura Journal of Plant Protection and Pathology, 3(7), 701–715.
- IPCC WG1, Climate Change (2007). The Physical Science Basis. Cambridge University Press, Cambridge- England.
- Jackson, M.L. (1958). Soil chemical analysis. Pretice-Hall, Inc. Englewood Cliffs, New Jersey, USA, 1498p.
- Kizildag, N., Sagliker, H., Cenkseven, S., Darici, C. & Kocak, B. (2014). Effects of imazamoxon soil carbon and nitrogen mineralization under Mediterranean climate. Turkish Journal of Agriculture and Forestry, 39, 334–339.
- Kirchsbaum, M.U.F. (2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming?. Biogeochemistry, 48, 21–51.
- Lemee, G. (1967). Investigations sur la mineralisation de l‘azote et son evolution annuelle dans des humus forestiers in situ. Oecologia Plantarum, 2, 285–324.
- Monkiedje, A. & Spiteller M. (2002). Effects of the phenylamide fungicides, mefenoxam and metalaxyl, on the biological properties of sandy loam and sandy clay soils, Biology and Fertility of Soils, 35: 393–398.
- Müjdeci, M., Sariyev, A. & Polat, V. (2005). Buğday (Triticum aestivum L.) veriminin matematiksel modellenmesi. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 11(4), 349–353.
- Roberts, T.R. & Hutson, D.H. (1999). Metabolic Pathways of Agrochemicals. The Royal Society of Chemistry, UK, 871p.
- Sağlam, M.T. (1979). Toprakta mevcut bazı azot formlarının tayini ve azot elverişlilik indeksleri, Atatürk Üniversitesi Ziraat Fakültesi. Erzurum, Türkiye.
- Schimel, J.P. &Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591–602.
- Schulz, L. (2010). Emamectin benzoate WG (A16955H) - Effects on the Activity of Soil Microflora (Nitrogen and Carbon Transformation Tests). BioChem Agrar, Gerichshain, Germany. Report no. 10 10 48 006 C/N. OECD 216, OECD 217.
- Ünver, M.C. (2007). Murat dağı (Uşak, Kütahya) alpin ve subalpin bölgesinin bazı bitki topluluklarında azot dönüşümleri üzerinde araştırmalar. Uludağ Üniversitesi Fen Bilimleri Enstitüsü. Bursa, Türkiye.