Oreochromis niloticus ’un Farklı Dokularında SOD Aktivitesi Üzerine Kadmiyumun Etkisi
Yıl 2020,
, 581 - 584, 31.12.2020
Tüzün Aytekin
,
Ferit Kargın
Öz
Bu çalışmada kadmiyum’un Oreochromis niloticus’da superoksit dismutaz (SOD) aktivitesi üzerine etkileri araştırılmıştır. Balıklar 0.2, 1.0 ve 2.0 mg/L Cd derişimlerinin etkisine 15 ve 30 günlük sürelerle bırakılarak karaciğer, solungaç, böbrek ve kas dokularında superoksit dismutaz (SOD) aktiviteleri belirlenmiştir. Kadmiyumun farklı derişimlerinin etkisine bırakılan O. niloticus'un karaciğer, böbrek, solungaç ve kas dokularında süperoksit dismutaz (SOD) enzim aktivitesi kontrol değerleriyle ile karşılaştırıldığında önemli değişiklikler belirlenmiştir. Kadmiyumun denenen yüksek derişimleri karaciğer dokusunda süperoksit dismutaz (SOD) aktivitesinin azalmasına, böbrek dokusunda ise bir artışa neden olmuştur.
Destekleyen Kurum
Çukurova Üniversitesi Bilimsel Araştırma Projeleri birimi (BAP)
Proje Numarası
FEF2003D12
Teşekkür
Bu çalışma Çukurova Üniversitesi Bilimsel Araştırma Projeleri birimi (BAP) tarafından desteklenmiştir (Proje No: FEF2003D12).
Kaynakça
- Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singh, S.N., & Singh, S.P. (2003). Phytoremediation of Lead, Nickel, and Copper by Salix acmophylla Boiss: Role of Antioxidant Enzymes and Antioxidant Substances. Bulletin of Environmental Contamination and Toxicology, 70, 462-469.
- Chandran, R., Sivakumar, A.A., Mohandass, S., & Aruchami, M. (2005). Effect of Cadmium and Zinc on Antioxidant Enzyme Activity in the Gastropod, Achatina fulica. Comparative Biochemistry and Physiology Part C, 140, 422-426.
- Cinier, C. C., Ramel, M. P., Faure, R., Garin, D. & Bouvet, Y. (1999(. Kinetics of Cadmium Accumulation and Elimination in Carp Cyprinus carpio Tissues. Comp. Biochem. Physiol., 122, 345–352.
- Doyotte, A., Cossu, C., Jacquin, M.C., Babut, M., & Vasseur, R. (1997). Antioxidant Enzymes, Glutathione and Lipid Peroxidation as Relevant Biomarkers of Experimental or Field Exposure in the Gills and the Digestive Gland of the Freshwater Bivalve Unio turnidus. Aquatic Toxicology, 39, 93-110.
- Elumalai, M., Antunes, C., & Guilhermino, L. (2002). Effects of Single Metals and Their Mixtures on Selected Enzymes of Carcinus maenas. Water, Air and Soil Pollution, 141, 273-280.
- Isamah, G.K., Asagba, S.O., & Coker, H.A.B. (2000). Comparative Evaluation of the Levels of Some Antioxidant Enzymes and Lipid Peroxidation in Different Fish Species in Two Rivers in the Western Niger Delta. Bulletin of Environmental Contamination and Toxicology, 65, 351-356.
- Khangarot, B.S., & Rathore, R.S. (2003). Effects of Copper on Respiration, Reproduction, and Some Biochemical Parameters of Water Flea Daphnia magna Straus. Bulletin of Environmental Contamination and Toxicology, 70, 112-117.
- Lionetto, M.G., Maffia, M., Cappello, M.S., Giordano, M.E., Storelli, C., & Schettino, T. (1998). Effect of Cadmium on carbonic Anhydrase and Na+-K+-ATPase in Eel, Anguilla anguilla, Intestine and Gills. Comparative Biochemistry and Physiology Part A, 120, 89-91.
- McCord J.M. & Fridovich I. (1969). Süperoxide Dismutase: An Enzymatic Function for Erytrocuprein (hemocuprein). J. Biol. Chem., 244, 6049-6055
- Oost, R., Goksyr, A., Celander, M., Heida, H., & Vermeulen, N.P.E. (1996). Biomonitoring of Aquatic Pollution with Feral Eel (Anguilla anguilla). Aquatic Toxicology, 36, 189-222.
- Prohaska, J.R & Sunde, R.A. (1993). Comparison of Liver Glutathione Peroxidase Activity and mRNA in Female and Male Mice and Rats. Comparative Biochemistry and Physiology. 105, 111–116.
- Regoli, F. & Principato, G. (1995). Glutathione, Glutathione-dependent and Antioxidant Enzymes in Mussel, Mytilus galloprovinciallis, Exposed to Metals under Field and Laboratory Conditioons: Implications for the Use of Biochemical Biomarkers. Aquatic Toxicology, 31, 143-164.
- Roche, H. & Boge, G. (1996). Fish Blood Parameters as a Potentiol Tool for Identification of Stress Caused by Environmental Factors and Chemical Intoxication. Marine Environmental Research, 41, 27-43.
- Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. & Girard, J.P. (2000). Cadmium and Copper Dsiplay Different Responses towards Oxidative Sress in the Kidney of the Sea Bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185-194.
- Sridevi, B., Reddy, K.V., & Reddy, S.L.N. (1998). Effect of Trivalent and Hexavalent Chromium on Antioxidant Enzyme Activities and Lipid Peroxidation in a Freshwater Field Crab, Barytelphusa guerini. Bulletin Environmental Contamination and Toxicology, 61, 384-390.
- Sastry, K.V., & Subhadra, K.M. (1985). In Vivo Effects of Cadmium on Some Enzyme Activities in Tissues of the Freshwater Catfish, Heteropneustes fossilis. Environmental Research, 36, 32-45.
- Suresh, A., Sivaramakrishna, B. & Radhakrishnaiah, K. (1995). Cadmium Induced Changes in Ion Levels and ATPase Activities in the Muscle of the Fry and Fingerlings of the Freshwater Fish, Cyprinus carpio. Chemosphere, 30 (2), 365-375.
- Viarengo, A. (1985). Biochemical Effects of Trace Metals. Marine Pollution Bulletin, 16 (4), 153-158.
- Woo, P. T. K., Sin, Y. M. & Wong, G, M. K. (1993). The Effects of Short-term Accute Cadmium Exposure on Blue Tilapia, Oreochromis aureus. Environmental Biology of Fishes, 37, 67-74.
Effect of Cadmium on SOD Activity in different Tissues of Oreochromis niloticus
Yıl 2020,
, 581 - 584, 31.12.2020
Tüzün Aytekin
,
Ferit Kargın
Öz
In this study, the effects of cadmium on the superoksit dismutaz (SOD) activity in Oreochromis niloticus were investigated. Fishes were exposed to 0.2, 1.0 ve 2.0 mg/L Cd for 15 and 30 days to determine superoksit dismutaz (SOD) activities in liver, gill, kidney and muscle tissues. The were significant changes in superoksit dismutaz (SOD) activities in liver, gill, kidney and muscle tissues of O. niloticus exposed to cadmium compared to controls. At the high concentrations tested, cadmium caused a decrease in superoksit dismutaz (SOD) activity in the liver while it caused an increase in the kidney tissue.
Proje Numarası
FEF2003D12
Kaynakça
- Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singh, S.N., & Singh, S.P. (2003). Phytoremediation of Lead, Nickel, and Copper by Salix acmophylla Boiss: Role of Antioxidant Enzymes and Antioxidant Substances. Bulletin of Environmental Contamination and Toxicology, 70, 462-469.
- Chandran, R., Sivakumar, A.A., Mohandass, S., & Aruchami, M. (2005). Effect of Cadmium and Zinc on Antioxidant Enzyme Activity in the Gastropod, Achatina fulica. Comparative Biochemistry and Physiology Part C, 140, 422-426.
- Cinier, C. C., Ramel, M. P., Faure, R., Garin, D. & Bouvet, Y. (1999(. Kinetics of Cadmium Accumulation and Elimination in Carp Cyprinus carpio Tissues. Comp. Biochem. Physiol., 122, 345–352.
- Doyotte, A., Cossu, C., Jacquin, M.C., Babut, M., & Vasseur, R. (1997). Antioxidant Enzymes, Glutathione and Lipid Peroxidation as Relevant Biomarkers of Experimental or Field Exposure in the Gills and the Digestive Gland of the Freshwater Bivalve Unio turnidus. Aquatic Toxicology, 39, 93-110.
- Elumalai, M., Antunes, C., & Guilhermino, L. (2002). Effects of Single Metals and Their Mixtures on Selected Enzymes of Carcinus maenas. Water, Air and Soil Pollution, 141, 273-280.
- Isamah, G.K., Asagba, S.O., & Coker, H.A.B. (2000). Comparative Evaluation of the Levels of Some Antioxidant Enzymes and Lipid Peroxidation in Different Fish Species in Two Rivers in the Western Niger Delta. Bulletin of Environmental Contamination and Toxicology, 65, 351-356.
- Khangarot, B.S., & Rathore, R.S. (2003). Effects of Copper on Respiration, Reproduction, and Some Biochemical Parameters of Water Flea Daphnia magna Straus. Bulletin of Environmental Contamination and Toxicology, 70, 112-117.
- Lionetto, M.G., Maffia, M., Cappello, M.S., Giordano, M.E., Storelli, C., & Schettino, T. (1998). Effect of Cadmium on carbonic Anhydrase and Na+-K+-ATPase in Eel, Anguilla anguilla, Intestine and Gills. Comparative Biochemistry and Physiology Part A, 120, 89-91.
- McCord J.M. & Fridovich I. (1969). Süperoxide Dismutase: An Enzymatic Function for Erytrocuprein (hemocuprein). J. Biol. Chem., 244, 6049-6055
- Oost, R., Goksyr, A., Celander, M., Heida, H., & Vermeulen, N.P.E. (1996). Biomonitoring of Aquatic Pollution with Feral Eel (Anguilla anguilla). Aquatic Toxicology, 36, 189-222.
- Prohaska, J.R & Sunde, R.A. (1993). Comparison of Liver Glutathione Peroxidase Activity and mRNA in Female and Male Mice and Rats. Comparative Biochemistry and Physiology. 105, 111–116.
- Regoli, F. & Principato, G. (1995). Glutathione, Glutathione-dependent and Antioxidant Enzymes in Mussel, Mytilus galloprovinciallis, Exposed to Metals under Field and Laboratory Conditioons: Implications for the Use of Biochemical Biomarkers. Aquatic Toxicology, 31, 143-164.
- Roche, H. & Boge, G. (1996). Fish Blood Parameters as a Potentiol Tool for Identification of Stress Caused by Environmental Factors and Chemical Intoxication. Marine Environmental Research, 41, 27-43.
- Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. & Girard, J.P. (2000). Cadmium and Copper Dsiplay Different Responses towards Oxidative Sress in the Kidney of the Sea Bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185-194.
- Sridevi, B., Reddy, K.V., & Reddy, S.L.N. (1998). Effect of Trivalent and Hexavalent Chromium on Antioxidant Enzyme Activities and Lipid Peroxidation in a Freshwater Field Crab, Barytelphusa guerini. Bulletin Environmental Contamination and Toxicology, 61, 384-390.
- Sastry, K.V., & Subhadra, K.M. (1985). In Vivo Effects of Cadmium on Some Enzyme Activities in Tissues of the Freshwater Catfish, Heteropneustes fossilis. Environmental Research, 36, 32-45.
- Suresh, A., Sivaramakrishna, B. & Radhakrishnaiah, K. (1995). Cadmium Induced Changes in Ion Levels and ATPase Activities in the Muscle of the Fry and Fingerlings of the Freshwater Fish, Cyprinus carpio. Chemosphere, 30 (2), 365-375.
- Viarengo, A. (1985). Biochemical Effects of Trace Metals. Marine Pollution Bulletin, 16 (4), 153-158.
- Woo, P. T. K., Sin, Y. M. & Wong, G, M. K. (1993). The Effects of Short-term Accute Cadmium Exposure on Blue Tilapia, Oreochromis aureus. Environmental Biology of Fishes, 37, 67-74.