Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the effects of copper nanoparticles on oxidative stress in the model organism Galleria mellonella L.

Yıl 2021, , 278 - 284, 30.06.2021
https://doi.org/10.35229/jaes.886399

Öz

In this study, the effects of copper oxide nanoparticles at different concentrations (10, 100 and 1000 µg/mL) on catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST) and acetylcholinesterase (AChE) activities were investigated in the midgut and fat body of Galleria mellonella larvae.
It was determined that GPx activities increased in the group exposed to 100 µg/mL copper oxide nanoparticles, whereas a decrease in CAT, SOD and AChE activities was observed in midgut and fat body of G. mellonella larvae exposed to all copper oxide nanoparticles applied groups. Moreover, GST activity decreased in fat body in all applied groups, while an increased was observed in midgut of G. mellonella larvae when exposed to copper oxide nanoparticles.
Overall, these findings indicate that oxidative stress occurs due to the accumulation of reactive oxygen species as a result of the toxicity of the copper oxide nanoparticle of G. mellonella larvae.

Kaynakça

  • Aschberger, K., Micheletti, C., Sokull-Klüttgen, B. & Christensen, F.M. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health-Lessons learned from four case studies. Environment International, 37, 1143-1156.
  • Bebianno, M.J., Géret, F., Hoarau, P., Serafim, M.A., Coelho, M.R., Gnassiabarelli, M. & Roméo, M. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers 9(4–5), 305–330.
  • Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25, 12329–12341.
  • Bi, J.L. & Felton, G.W. (1995). Foliar oxygen stress and insect herbivory: primary compounds, secondary metabolites and reactive oxygen species as components of induced resistance. Journal of Chemical Ecology, 21, 1511–1530.
  • Boyles, M.S., Ranninger, C., Reischl, R., Rurik, M., Tessadri, R., Kohlbacher, O., Duschl, A. & Huber, C.G. (2016). Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Particle and Fibre Toxicology, 13, 49.
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Bronskill, J. (1961). A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal of the Lepidopterists Society, 2, 102-104.
  • Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
  • Gomes, T. (2012). Effects of nanoparticles exposure in the mussel Mytılus Galloprovincialis. Faculdade De Ciências E Tecnologia.
  • Gonçalves, J.F., Nicoloso, F.T., da Costa, P., Farias, J.G., Carvalho, F.B., da Rosa, M.M., Gutierres, J.M., Abdalla, F.H., Pereira, J.S., Dias, G.R., Barbosa, N.B., Dressler, V.L., Rubin, M.A., Morsch, V.M. & Schetinger, M.R. (2012). Behaviour and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food and Chemical Toxicology, 50, 3709–3718.
  • Gonzalez-Reya, M., Mattos, J.J., Piazza, C.E., Bainy, A.C.D. & Bebianno, M.J. (2014). Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis. Aquatic Toxicology, 153,12-26.
  • Greenwald, R.A. (1985). Handbook of methods for oxygen radical research. CRC Press: Boca Raton, Florida, United States of America, s. 447.
  • Habig, W.H., Pabst, M.J. & Jakoby, W.B. (1974). Glutathione S-transferases: The first enzymatic step mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.
  • Hannig, M., Kriener, L., Hoth-Hannig, W., Becker-Willinger, C. & Schmidt, H. (2007). Influence of nanocomposite surface coating on biofilm formation in situ. Journal of Nanoscience and Nanotechnology, 7, 4642–4648.
  • Ivask, A., Juganson, K., Bondarenko, O., Mortimer, M., Aruoja, V., Kasemets, K., Blinova, I., Heinlaan, M., Slaveykova, V. & Kahru, A. (2014). Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology, 8, 57–71.
  • Lawrence, R.A. & Burk, R.F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71(4), 952-958.
  • Lehtonen, K.K. & Leiniö, S. (2003). Effects of exposure to copper and malathion on metallothionein levels and acetylcholinesterase activity of the mussel Mytilus edulis and the clam Macoma balthica from the Northern Baltic Sea. Bulletin of Environmental Contamination and Toxicology, 71, 489–496.
  • McCord, J.M. & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22), 6049–6055.
  • Milivojevic, T., Glavan, G., Bozic, J., Sepcic, K. & Mesaric, T. (2015). Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere, 120, 547-554.
  • Mir, A.H., Qamar, A., Qadir, I., Naqvi, A.H. & Begum, B. (2020). Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Scientific Reports, 10, 1617.
  • Nations, S., Long, M., Wages, M., Maul, J.D., Theodorakis, C.W. & Cobb, G.P. (2015). Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis. Chemosphere, 135, 166–174.
  • Libralato, G., Galdiero, E., Falanga, A., Carotenuto, R., de Alteriis, E. & Guida, M. (2017). Toxicity effects of functionalized quantum dots, gold and polystyrene nanoparticles on target aquatic biological models: a review. Molecules, 22, 1439.
  • Niska, K., Santos-Martinez, M.J., Radomski, M.W. & Inkielewicz-Stepniak, I. (2015). CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: Protective effect of crocetin. Toxicology in Vitro, 29, 663–671.
  • Assadian, E., Zarei, M.H., Gilani, A.G., Farshin, M., Degampanah, H. & Pourahmad, J. (2018). Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research, 184 (2), 350–357.
  • Ramadan, R.H., Abdel-Meguid, A.D., & Emara, M.M. (2020). Effects of synthesized silver and chitosan nanoparticles using Nerium oleander and Aloe vera on antioxidant enzymes in Musca domestica. International Journal on Environmental Sciences, 21, 9-14.
  • Regoli, F. & Principato, G. (1995). Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquatic Toxicology, 31, 143–164.
  • Schrand, A.M., Rahman, M.F., Hussain, S.M., Schlager, J.J., Smith, D.A. & Syed, A.F. (2010). Metal‐based nanoparticles and their toxicity assessment. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2, 544-568.
  • Sezer Tuncsoy, B., Tuncsoy, M., Gomes, T. Sousa, V., Teixeira, M.R. & Bebianno, M.J., Ozalp, P. (2019). Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L. Bulletin of Environmental Contamination and Toxicology, 102, 341–346.
  • Sezer Tuncsoy, B. (2020). Bakır oksit nanopartiküllerinin Galleria mellonella larvaları üzerine immün ve metabolik etkileri. Karaelmas Fen ve Mühendislik Dergisi, 10 (1), 53-60.
  • Thany, S.H., Tricoire-Leignel, H. & Lapied, B. (2010). Identification of cholinergic synaptic transmission in the insect nervous system. Advances in Experimental Medicine and Biology, 683, 1-10.
  • Yasur, J. & Pathipati, U.R. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere, 124, 92–102.
  • Zhou, M., Tian, M. & Li, C. (2016). Copper-Based nanomaterials for cancer ımaging and therapy. Bioconjugate Chemistry, 27, 1188–1199.

Model Organizma Galleria mellonella L.’da Bakır Nanopartiküllerinin Oksidatif Stres Üzerine Etkilerinin Değerlendirilmesi

Yıl 2021, , 278 - 284, 30.06.2021
https://doi.org/10.35229/jaes.886399

Öz

Yapılan çalışmada farklı derişimlerdeki bakır oksit nanopartiküllerinin (10, 100 ve 1000 µg/mL) Galleria mellonella larvalarının orta barsak ve yağ dokusundaki katalaz (CAT), superoksit dismutaz (SOD), glutatyon peroksidaz (GPx), glutatyon-s-transferaz (GST) ve asetilkolinesteraz (AChE) aktiviteleri üzerine etkileri araştırılmıştır.
Farklı derişimlerdeki bakır oksit nanopartiküllerine maruz bırakılan G. mellonella larvalarının orta barsak ve yağ dokularında CAT, SOD ve AChE aktivitelerinde azalma tespit edilirken, 100 µg/mL bakır oksit nanopartikülü uygulaması yapılan grupta GPx aktivitelerinde artış meydana geldiği belirlenmiştir. Ayrıca GST aktivitesinde tüm uygulama gruplarında yağ dokuda azalma, orta barsakta ise artış meydana geldiği tespit edilmiştir.
Genel olarak, bu bulgular, G. mellonella larvalarının bakır oksit nanopartikülünün toksisitesi sonucunda reaktif oksijen türlerinin birikimi nedeniyle oksidatif stresin meydana geldiğini göstermektedir.

Kaynakça

  • Aschberger, K., Micheletti, C., Sokull-Klüttgen, B. & Christensen, F.M. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health-Lessons learned from four case studies. Environment International, 37, 1143-1156.
  • Bebianno, M.J., Géret, F., Hoarau, P., Serafim, M.A., Coelho, M.R., Gnassiabarelli, M. & Roméo, M. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers 9(4–5), 305–330.
  • Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25, 12329–12341.
  • Bi, J.L. & Felton, G.W. (1995). Foliar oxygen stress and insect herbivory: primary compounds, secondary metabolites and reactive oxygen species as components of induced resistance. Journal of Chemical Ecology, 21, 1511–1530.
  • Boyles, M.S., Ranninger, C., Reischl, R., Rurik, M., Tessadri, R., Kohlbacher, O., Duschl, A. & Huber, C.G. (2016). Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Particle and Fibre Toxicology, 13, 49.
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Bronskill, J. (1961). A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal of the Lepidopterists Society, 2, 102-104.
  • Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
  • Gomes, T. (2012). Effects of nanoparticles exposure in the mussel Mytılus Galloprovincialis. Faculdade De Ciências E Tecnologia.
  • Gonçalves, J.F., Nicoloso, F.T., da Costa, P., Farias, J.G., Carvalho, F.B., da Rosa, M.M., Gutierres, J.M., Abdalla, F.H., Pereira, J.S., Dias, G.R., Barbosa, N.B., Dressler, V.L., Rubin, M.A., Morsch, V.M. & Schetinger, M.R. (2012). Behaviour and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food and Chemical Toxicology, 50, 3709–3718.
  • Gonzalez-Reya, M., Mattos, J.J., Piazza, C.E., Bainy, A.C.D. & Bebianno, M.J. (2014). Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis. Aquatic Toxicology, 153,12-26.
  • Greenwald, R.A. (1985). Handbook of methods for oxygen radical research. CRC Press: Boca Raton, Florida, United States of America, s. 447.
  • Habig, W.H., Pabst, M.J. & Jakoby, W.B. (1974). Glutathione S-transferases: The first enzymatic step mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.
  • Hannig, M., Kriener, L., Hoth-Hannig, W., Becker-Willinger, C. & Schmidt, H. (2007). Influence of nanocomposite surface coating on biofilm formation in situ. Journal of Nanoscience and Nanotechnology, 7, 4642–4648.
  • Ivask, A., Juganson, K., Bondarenko, O., Mortimer, M., Aruoja, V., Kasemets, K., Blinova, I., Heinlaan, M., Slaveykova, V. & Kahru, A. (2014). Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology, 8, 57–71.
  • Lawrence, R.A. & Burk, R.F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71(4), 952-958.
  • Lehtonen, K.K. & Leiniö, S. (2003). Effects of exposure to copper and malathion on metallothionein levels and acetylcholinesterase activity of the mussel Mytilus edulis and the clam Macoma balthica from the Northern Baltic Sea. Bulletin of Environmental Contamination and Toxicology, 71, 489–496.
  • McCord, J.M. & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22), 6049–6055.
  • Milivojevic, T., Glavan, G., Bozic, J., Sepcic, K. & Mesaric, T. (2015). Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere, 120, 547-554.
  • Mir, A.H., Qamar, A., Qadir, I., Naqvi, A.H. & Begum, B. (2020). Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Scientific Reports, 10, 1617.
  • Nations, S., Long, M., Wages, M., Maul, J.D., Theodorakis, C.W. & Cobb, G.P. (2015). Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis. Chemosphere, 135, 166–174.
  • Libralato, G., Galdiero, E., Falanga, A., Carotenuto, R., de Alteriis, E. & Guida, M. (2017). Toxicity effects of functionalized quantum dots, gold and polystyrene nanoparticles on target aquatic biological models: a review. Molecules, 22, 1439.
  • Niska, K., Santos-Martinez, M.J., Radomski, M.W. & Inkielewicz-Stepniak, I. (2015). CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: Protective effect of crocetin. Toxicology in Vitro, 29, 663–671.
  • Assadian, E., Zarei, M.H., Gilani, A.G., Farshin, M., Degampanah, H. & Pourahmad, J. (2018). Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research, 184 (2), 350–357.
  • Ramadan, R.H., Abdel-Meguid, A.D., & Emara, M.M. (2020). Effects of synthesized silver and chitosan nanoparticles using Nerium oleander and Aloe vera on antioxidant enzymes in Musca domestica. International Journal on Environmental Sciences, 21, 9-14.
  • Regoli, F. & Principato, G. (1995). Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquatic Toxicology, 31, 143–164.
  • Schrand, A.M., Rahman, M.F., Hussain, S.M., Schlager, J.J., Smith, D.A. & Syed, A.F. (2010). Metal‐based nanoparticles and their toxicity assessment. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2, 544-568.
  • Sezer Tuncsoy, B., Tuncsoy, M., Gomes, T. Sousa, V., Teixeira, M.R. & Bebianno, M.J., Ozalp, P. (2019). Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L. Bulletin of Environmental Contamination and Toxicology, 102, 341–346.
  • Sezer Tuncsoy, B. (2020). Bakır oksit nanopartiküllerinin Galleria mellonella larvaları üzerine immün ve metabolik etkileri. Karaelmas Fen ve Mühendislik Dergisi, 10 (1), 53-60.
  • Thany, S.H., Tricoire-Leignel, H. & Lapied, B. (2010). Identification of cholinergic synaptic transmission in the insect nervous system. Advances in Experimental Medicine and Biology, 683, 1-10.
  • Yasur, J. & Pathipati, U.R. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere, 124, 92–102.
  • Zhou, M., Tian, M. & Li, C. (2016). Copper-Based nanomaterials for cancer ımaging and therapy. Bioconjugate Chemistry, 27, 1188–1199.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Benay Tunçsoy 0000-0003-4361-3475

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 25 Şubat 2021
Kabul Tarihi 27 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Tunçsoy, B. (2021). Model Organizma Galleria mellonella L.’da Bakır Nanopartiküllerinin Oksidatif Stres Üzerine Etkilerinin Değerlendirilmesi. Journal of Anatolian Environmental and Animal Sciences, 6(2), 278-284. https://doi.org/10.35229/jaes.886399


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS