Research Article
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 1, 74 - 79, 31.03.2020
https://doi.org/10.35229/jaes.681972

Abstract

References

  • 1. Voutsadaki S, Tsikalas GK, Klontzas E, et al (2010) A “turn-on” coumarin-based fluorescent sensor with high selectivity for mercury ions in aqueous media. Chem Commun 46:3292. https://doi.org/10.1039/b926384e
  • 2. Yuan C, Liu B, Liu F, et al (2014) Fluorescence “Turn On” Detection of Mercuric Ion Based on Bis(dithiocarbamato)copper(II) Complex Functionalized Carbon Nanodots. Anal Chem 86:1123–1130. https://doi.org/10.1021/ac402894z
  • 3. Jarzyńska G, Falandysz J (2011) The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. J Environ Sci Heal Part A 46:569–573. https://doi.org/10.1080/10934529.2011.562816
  • 4. Cope MJ, Kirkbright GF, Burr PM (1982) Use of inductively coupled plasma optical emission spectrometry (ICP–OES) for the analysis of doped cadmium mercury telluride employing a graphite rod electrothermal vaporisation device for sample introduction. Analyst 107:611–616. https://doi.org/10.1039/AN9820700611
  • 5. Yoon S, Miller EW, He Q, et al (2007) A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angew Chemie Int Ed 46:6658–6661. https://doi.org/10.1002/anie.200701785
  • 6. Zhao Y, Zheng B, Du J, et al (2011) A fluorescent “turn-on” probe for the dual-channel detection of Hg(II) and Mg(II) and its application of imaging in living cells. Talanta 85:2194–2201. https://doi.org/10.1016/j.talanta.2011.07.070
  • 7. Cammann K, Lemke U, Rohen A, et al (1991) Chemical Sensors and Biosensors—Principles and Applications. Angew Chemie Int Ed English 30:516–539. https://doi.org/10.1002/anie.199105161
  • 8. Farruggia G, Iotti S, Prodi L, et al (2006) 8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells. J Am Chem Soc 128:344–350. https://doi.org/10.1021/ja056523u
  • 9. Aksuner N, Basaran B, Henden E, et al (2011) A sensitive and selective fluorescent sensor for the determination of mercury(II) based on a novel triazine-thione derivative. Dye Pigment 88:143–148. https://doi.org/10.1016/j.dyepig.2010.05.014
  • 10. Prodi L, Bargossi C, Montalti M, et al (2000) An effective fluorescent chemosensor for mercury ions [3]. J Am Chem Soc 122:6769–6770. https://doi.org/10.1021/ja0006292
  • 11. Wei Y, Cheng D, Ren T, et al (2016) Design of NIR Chromenylium-Cyanine Fluorophore Library for “Switch-ON” and Ratiometric Detection of Bio-Active Species In Vivo. Anal Chem 88:1842–1849. https://doi.org/10.1021/acs.analchem.5b04169
  • 12. Du W, Cheng Y, Shu W, Qi Z (2017) A novel rhodamine-based fluorescence chemosensor containing polyether for mercury (II) ions in aqueous solution. Quim Nova 40:733–738. https://doi.org/10.21577/0100-4042.20170060
  • 13. Zhang Y-S, Balamurugan R, Lin J-C, et al (2017) Pd2+ fluorescent sensors based on amino and imino derivatives of rhodamine and improvement of water solubility by the formation of inclusion complexes with β-cyclodextrin. Analyst 142:1536–1544. https://doi.org/10.1039/C6AN02594C
  • 14. Binev Y, Corvo M, Aires-de-Sousa J (2004) The Impact of Available Experimental Data on the Prediction of 1 H NMR Chemical Shifts by Neural Networks. J Chem Inf Comput Sci 44:946–949. https://doi.org/10.1021/ci034229k
  • 15. Binev Y, Aires-de-Sousa J (2004) Structure-Based Predictions of 1 H NMR Chemical Shifts Using Feed-Forward Neural Networks. J Chem Inf Comput Sci 44:940–945. https://doi.org/10.1021/ci034228s
  • 16. Aires-de-Sousa J, Hemmer MC, Gasteiger J (2002) Prediction of 1 H NMR Chemical Shifts Using Neural Networks. Anal Chem 74:80–90. https://doi.org/10.1021/ac010737m
  • 17. Castillo AM, Patiny L, Wist J (2011) Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J Magn Reson 209:123–130. https://doi.org/10.1016/j.jmr.2010.12.008
  • 18. Banfi D, Patiny L (2008) www.nmrdb.org: Resurrecting and Processing NMR Spectra On-line. Chim Int J Chem 62:280–281. https://doi.org/10.2533/chimia.2008.280
  • 19. Currie LA (1995) Nomenclature in evaluation of analytical methods , including detect ion and quantification ca pa bi I it ies ’ ( IUPAC Recommendations 1995 ). Pure Appl Chem 67:1699–1723. https://doi.org/10.1016/S0003-2670(99)00104-X
  • 20. Xu L, Xu Y, Zhu W, et al (2012) Modulating the selectivity by switching sensing media: a bifunctional chemosensor selectivity for Cd2+ and Pb2+ in different aqueous solutions. RSC Adv 2:6323. https://doi.org/10.1039/c2ra20840g

Detection of Hg2+ in Aqueous Media by A New Xanthene Based Schiff Base Sensor

Year 2020, Volume: 5 Issue: 1, 74 - 79, 31.03.2020
https://doi.org/10.35229/jaes.681972

Abstract

A xanthene-based colorimetric sensor, 2-((5-chloro-2-oxoindolin-3-ylidene)amino)-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one, was designed and its metal sensing properties was evaluated in aqueous solutions. The sensor showed colorimetric response toward Hg2+ from colorless solution to pink among various metal ions such as Na+, K+, Mg2+, Ca2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Al3+, Cd2+ and Pb2+. The addition of Hg2+ exhibit an absorption enhancement of the sensor based on a spirocycle ring‐opening process and a subsequent hydrolysis reaction. The detection limit of the sensor for Hg2+ was found to be 7.88×10−8 M.

References

  • 1. Voutsadaki S, Tsikalas GK, Klontzas E, et al (2010) A “turn-on” coumarin-based fluorescent sensor with high selectivity for mercury ions in aqueous media. Chem Commun 46:3292. https://doi.org/10.1039/b926384e
  • 2. Yuan C, Liu B, Liu F, et al (2014) Fluorescence “Turn On” Detection of Mercuric Ion Based on Bis(dithiocarbamato)copper(II) Complex Functionalized Carbon Nanodots. Anal Chem 86:1123–1130. https://doi.org/10.1021/ac402894z
  • 3. Jarzyńska G, Falandysz J (2011) The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. J Environ Sci Heal Part A 46:569–573. https://doi.org/10.1080/10934529.2011.562816
  • 4. Cope MJ, Kirkbright GF, Burr PM (1982) Use of inductively coupled plasma optical emission spectrometry (ICP–OES) for the analysis of doped cadmium mercury telluride employing a graphite rod electrothermal vaporisation device for sample introduction. Analyst 107:611–616. https://doi.org/10.1039/AN9820700611
  • 5. Yoon S, Miller EW, He Q, et al (2007) A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angew Chemie Int Ed 46:6658–6661. https://doi.org/10.1002/anie.200701785
  • 6. Zhao Y, Zheng B, Du J, et al (2011) A fluorescent “turn-on” probe for the dual-channel detection of Hg(II) and Mg(II) and its application of imaging in living cells. Talanta 85:2194–2201. https://doi.org/10.1016/j.talanta.2011.07.070
  • 7. Cammann K, Lemke U, Rohen A, et al (1991) Chemical Sensors and Biosensors—Principles and Applications. Angew Chemie Int Ed English 30:516–539. https://doi.org/10.1002/anie.199105161
  • 8. Farruggia G, Iotti S, Prodi L, et al (2006) 8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells. J Am Chem Soc 128:344–350. https://doi.org/10.1021/ja056523u
  • 9. Aksuner N, Basaran B, Henden E, et al (2011) A sensitive and selective fluorescent sensor for the determination of mercury(II) based on a novel triazine-thione derivative. Dye Pigment 88:143–148. https://doi.org/10.1016/j.dyepig.2010.05.014
  • 10. Prodi L, Bargossi C, Montalti M, et al (2000) An effective fluorescent chemosensor for mercury ions [3]. J Am Chem Soc 122:6769–6770. https://doi.org/10.1021/ja0006292
  • 11. Wei Y, Cheng D, Ren T, et al (2016) Design of NIR Chromenylium-Cyanine Fluorophore Library for “Switch-ON” and Ratiometric Detection of Bio-Active Species In Vivo. Anal Chem 88:1842–1849. https://doi.org/10.1021/acs.analchem.5b04169
  • 12. Du W, Cheng Y, Shu W, Qi Z (2017) A novel rhodamine-based fluorescence chemosensor containing polyether for mercury (II) ions in aqueous solution. Quim Nova 40:733–738. https://doi.org/10.21577/0100-4042.20170060
  • 13. Zhang Y-S, Balamurugan R, Lin J-C, et al (2017) Pd2+ fluorescent sensors based on amino and imino derivatives of rhodamine and improvement of water solubility by the formation of inclusion complexes with β-cyclodextrin. Analyst 142:1536–1544. https://doi.org/10.1039/C6AN02594C
  • 14. Binev Y, Corvo M, Aires-de-Sousa J (2004) The Impact of Available Experimental Data on the Prediction of 1 H NMR Chemical Shifts by Neural Networks. J Chem Inf Comput Sci 44:946–949. https://doi.org/10.1021/ci034229k
  • 15. Binev Y, Aires-de-Sousa J (2004) Structure-Based Predictions of 1 H NMR Chemical Shifts Using Feed-Forward Neural Networks. J Chem Inf Comput Sci 44:940–945. https://doi.org/10.1021/ci034228s
  • 16. Aires-de-Sousa J, Hemmer MC, Gasteiger J (2002) Prediction of 1 H NMR Chemical Shifts Using Neural Networks. Anal Chem 74:80–90. https://doi.org/10.1021/ac010737m
  • 17. Castillo AM, Patiny L, Wist J (2011) Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J Magn Reson 209:123–130. https://doi.org/10.1016/j.jmr.2010.12.008
  • 18. Banfi D, Patiny L (2008) www.nmrdb.org: Resurrecting and Processing NMR Spectra On-line. Chim Int J Chem 62:280–281. https://doi.org/10.2533/chimia.2008.280
  • 19. Currie LA (1995) Nomenclature in evaluation of analytical methods , including detect ion and quantification ca pa bi I it ies ’ ( IUPAC Recommendations 1995 ). Pure Appl Chem 67:1699–1723. https://doi.org/10.1016/S0003-2670(99)00104-X
  • 20. Xu L, Xu Y, Zhu W, et al (2012) Modulating the selectivity by switching sensing media: a bifunctional chemosensor selectivity for Cd2+ and Pb2+ in different aqueous solutions. RSC Adv 2:6323. https://doi.org/10.1039/c2ra20840g
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Kaan Karaoğlu 0000-0003-3265-8328

Publication Date March 31, 2020
Submission Date January 29, 2020
Acceptance Date February 27, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Karaoğlu, K. (2020). Detection of Hg2+ in Aqueous Media by A New Xanthene Based Schiff Base Sensor. Journal of Anatolian Environmental and Animal Sciences, 5(1), 74-79. https://doi.org/10.35229/jaes.681972


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS