Review
BibTex RIS Cite

Süt Sığırlarının Beslenmesinde Metabolize Edilebilir Protein Sistemleri

Year 2020, Volume: 5 Issue: 2, 178 - 184, 30.06.2020
https://doi.org/10.35229/jaes.696143

Abstract

Son yıllarda süt sığırlarında protein beslenmesinin anlaşılmasında önemli ilerlemeler kaydedilmiştir. Metabolize edilebilir protein(MEP) ihtiyacı, hayvanın yaşama payı ve verim payını canlı ağırlık artışı, gebelik ve süt üretimi gibi net olarak karşılayan protein miktarıdır. MEP ince bağırsak tarafından emilen hem mikrobiyal hem de rumende parçalanmayan proteinden(RUP) oluşmaktadır. Bu nedenle, sadece rasyon ham protein(HP) değerini kullanarak ruminant rasyonlarınının hazırlanması hatalı olmaktadır. Wende analizi ve deterjan analizi gibi geleneksel yem analizi yöntemleri, yem HP’i tek bir birim olarak kabul eder; yem proteini fraksiyonlarının rumen parçalanabilirliğini, mikrobiyal protein sentezini, bağırsağa akış hızlarını ve bunların emilimini hesaba katmaz. Bu nedenle, süt ineklerinin protein ihtiyaçlarını karşılamak için hazılanan rasyon sadece rasyon protein kaynağı olarak HP’i değil aynı zamanda rumende sentezlenen mikrobiyal proteini(MP) de içermelidir. MP sistemleri her iki faktörü de göz önünde bulundurarak rumende parçalanabilir protein(RDP) ve RUP, ayrı ayrı rumen mikroplarının ve hayvanın protein ihtiyaçlarının karşılanmasında MP’in sentezini ve MEP’in hesaplanmasını içermekte ve böylece doğru olarak protein ihtiyaçlarını belirlenmektedir. Cornell Net Karbonhidrat ve Protein sistemi(CNCPS), Amerika’nın Ulusal Araştırma Konseyi(NRC), İngiltere’nin Tarımsal Araştırma Konseyi(ARC), Cornell Penn Miner Süt ve Amino İnek gibi ileri düzeyde geliştirilmiş beslenme modellerinin ortaya çıkışı; rasyon formülasyonu, süt sığırlarının ince bağırsak seviyesindeki protein ihtiyaçlarını tanımlamakta ve hayvanlara protein ihtiyaçlarını belirleyen dengeli rasyonların hazırlanmasında HP'den MEP'e geçilmesinin zorunluluğunu ortaya koymaktadır. Bu derleme makalesinde süt sığırlarının protein beslenmesi konusunda sadece rasyondaki HP dikkate alan basit besleme sisteminden sonra geliştirilmiş MEP sistemlerinde yer alan prensipleri ve kavramları son gelişmelerle birlikte incelemek amaçlanmıştır. 00

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Aboozar, M. (2012). Impacts of dietary metabolizable protein on performance and ruminal parameters of Holstein cows at early lactation, Research Opinions in Animal and Veterinary Sciences, 2(2): 102-108. Doi: http://www.roavs.com/pdf-files/Issue_2_2012/102-108.pdf
  • Arriola Apelo, S.I., Knapp, J.R. & Hanigan, M.D. (2014). Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. Journal of Dairy Science, 97:4000–4017. Doi: https://doi.org/10.3168/jds.2013-7392
  • Blouin, J.P., Bernier, J.F., Reynolds, C.K., Lobley, G.E., Dubreuilg, P. & Lapierre, H. (2002). Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows. Journal of Dairy Science, 85(10): 2618-2630. Doi: https://doi.org/10.3168/jds.S0022-0302(02)74347-6
  • Beever, D.E. & Cottrill, B.R. (1994). Protein systems for feeding ruminant livestock: A European assessment. Journal of Dairy Science, 77(7): 2031-2043. Doi: https://doi.org/10.3168/jds.S0022-0302(94)77148-4
  • Boston, R.C., Fox, D.G., Sniffen, C.J., Janczewski, R., Munsen, R. & Chalupa, W. (2000). Modelling Nutrient Utilization in Farm Animals, In: McNamara, J. P., France, J., & Beever D. (Ed), The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: The CPM Dairy project, 361-377p, CABI Publishing, Oxford, UK.
  • Broderick, G.A. & Colombini, S. (2010). In vitro methods to determine rate and extent of ruminal protein degradation, In: Crovetto, G. M. (Ed), In Energy and Protein Metabolism and Nutrition, 691–702p, EAAP Publication No. 127 Wageningen Academic Publishers, Wageningen, the Netherlands.
  • Broderick, G.A., Colombini, S., Costa, S., Karsli, M.A. & Faciola, A.P. (2016). Chemical and ruminal in vitro evaluation of Canadian canola meals produced over 4 years. Journal of Dairy Science, 99:7956–7970. Doi: https://doi.org/10.3168/jds.2016-11000
  • Burroughs, W., Trenkle, A. & Vetter, R.L. (1974). A system of protein evaluation for cattle and sheep involving metabolizable protein (amino acids) and urea fermentation potential of feedstuffs. Veterinary Medicine Small Animal Clinician, 69(6): 713. Doi: https://www.ncbi.nlm.nih.gov/pubmed/4494868
  • Castro, J.J., Arriola Apelo, S.I., Appuhamy, J.A.D.R.N. & Hanigan M.D. (2016). Development of a model describing regulation of casein synthesis by the mammary target of rapamycin (mTOR) signaling pathway in response to insulin, amino acids, and acetate. Journal of Dairy Science, 99:6714–6736. Doi: 10.3168/jds.2015-10591
  • Chase, L.E. (2011). Maintaining milk yield while lowering dietary protein content. WCDS Advances in dairy technology, 23: 153-164. Doi: https://wcds.ualberta.ca/wcds/wp-content/uploads/sites/57/wcds_archive/Archive/2011/Manuscripts/Chase.pdf
  • Chen, Z.H., Broderick, G.A., Luchini, N.D., Sloan, B.K. & Devillard, E. (2011). Effect of feeding different sources of rumen-protected methionine on milk production and N-utilization in lactating dairy cows. Journal of Dairy Science, 94:1978–1988. Doi: https://doi.org/10.3168/jds.2010-3578
  • CNCP. (2003). The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion. CNCPS Version 5.0., Cornell University, 130 Morrison Hall, Ethaca, New York.
  • Colin-Schoellen, O., Jorjanz, S. & Laurent, F. (2000). Metabolizable protein supply (PDIE) and restricted level of ruminally degradable nitrogen (PDIN) in total mixed rations: Effect on milk production and composition and on nitrogen utilization by dairy cows. Livestock Production Science, 67(1): 41-53. Doi: https://doi.org/10.1016/S0301-6226(00)00191-3
  • Curtis, R.V., Kim, J.J.M., Bajramaj, D.L., Doelman, J., Osborne, V.R. & Cant JP. (2014). Decline in mammary translational capacity during intravenous glucose infusion into lactating dairy cows. Journal of Dairy Science, 97:430–438. Doi: https://doi.org/10.3168/jds.2013-7252
  • Damiran, D. & Yu, P. (2012). Metabolic characteristics in ruminants of the protein in newly developed hull – less barley varieties with altered starch traits. Journal of Cereal Science, 55: 351-360. Doi: https://doi.org/10.1016/j.jcs.2012.01.006
  • Das, L.K., Kundu, S.S., Kumar, D. & Datt, C. (2014). The evaluation of metabolizable protein content of some indigenous feedstuffs used in ruminant nutrition. Vet World, 7(4): 257-261. Doi: http://www.veterinaryworld.org/Vol.7/April-2014/14.pdf
  • Doepel, L. & Lapierre, H. (2006). Challenges in protein nutrition for dairy cows. WCDS Advanced Dairy Science and Technology, 18: 57-67.
  • Edmunds, B., Suedekum, K.H., Spiekers, H. & Schwarz, F.J. (2012). Estimating ruminal crude protein degradation of forages using in situ and in vitro techniques. Animal Feed Science and Technology, 175:95–105. Doi: 10.1016/j.anifeedsci.2012.04.003
  • Fox, D.G., Tedeschi, L.O., Tylutki, T.P., Russell, J.B., Van Amburgh, M.E., Chase, L.E., Pell, A.N. & Overton T.R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology, 112:29–78. Doi: https://doi.org/10.1016/j.anifeedsci.2003.10.006
  • Haque, M.N., Rulquin, H., Andrade, A., Faverdin, P., Peyraud, J.L. & Lemosquet, S. (2012). Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. Journal of Dairy Science, 95:5876–5887. Doi: https://doi.org/10.3168/jds.2011-5230
  • Huhtanen, P., Rinne, M. & Nousiainen, J. (2008). Effects of silage soluble nitrogen components on metabolizable protein concentration: A meta analysis dairy cow production experiments. Journal of Dairy Science, 91(3): 1150-1158. Doi: https://doi.org/10.3168/jds.2007-0323
  • Huhtanen, P., Hetta, M. & Swensson, C. (2011). Evaluation of canola meal as a protein supplement for dairy cows: A review and a meta-analysis. Canadian Journal of Animal Science, 91: 529-543.
  • Krizsan, S.J., Ahvenjärvi, S., Volden, H. & Broderick, G.A. (2010). Estimation of rumen outflow in dairy cows fed grass silage-based diets by use of reticular sampling as an alternative to sampling from the omasal canal. Journal of Dairy Science, 93:1138–1147. Doi: 10.3168/jds.2009-2661
  • Lee, C., Hristov, A.N., Heyler, K.S., Cassidy, T.W., Long, M., Corl, B.A. & Karnati, S.K.R. (2011). Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. Journal of Dairy Science, 94(11): 5544-5557. Doi: 10.3168/jds.2010-3889.
  • Lee, C., Hristov, A.N., Cassidy, T.W., Heyler, K.S., Lapierre, H., Varga, G.A., de Veth, M.J. & Patton, R.A. (2012). Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. Journal of Dairy Science, 95:6042–6056. Doi: https://doi.org/10.3168/jds.2012-5581
  • Lee, C., Hristov, A.N., Heyler, K.S. & Cassidy, T.W. (2012). Effect of metabolizable protein supply and amino acid supplementation on nitrogen utilization, milk production, and ammonia emission from manure in dairy cows. Journal of Dairy Science, 95(9): 5253-5268. Doi: https://doi.org/10.3168/jds.2012-5366
  • Noftsger, S. & St-Pierre, N.R. (2003). Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. Journal of Dairy Science, 86:958–969. Doi: https://doi.org/10.3168/jds.S0022-0302(03)73679-0
  • NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th rev. ed. National Academy Press, Washington, DC.
  • Nuez Ortin, W. & Yu, P. (2010). Modeling the metabolic characteristics of proteins in dairy cattle from co-products of bioethanol processing: Comparison of the NRC 2001 model with DVE/OEB system. Journal of the Science of Food and Agriculture, 91(3): 405-411. Doi: 10.1002/jsfa.4199
  • O’Connor, J.D., Sniffen, C.J., Fox D.G. & Chalupa, W. (1993). A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. Journal of Animal Science, 71:1298–1311. Doi: https://doi.org/10.2527/1993.7151298x
  • Osorio, J.S., Ji, P., Drackley, J.K., Luchini, D. & Loor, J.J. (2013). Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and neutrophil function. Journal of Dairy Science, 96:6248–6263. Doi: https://doi.org/10.3168/jds.2012-5790
  • Pacheco, D., Schwab, C.G., Berthiaume, R., Raggio, G. & Lapierre, H. (2006). Comparison of net portal absorption with predicted flow of digestible amino acids: Scope for improving models. Journal of Dairy Science, 89:4747–4757. Doi: https://doi.org/10.3168/jds.S0022-0302(06)72524-3
  • Raggio, G., Pacheco, D., Berthiaume, R., Lobley, G.E. & Pellerin, D. (2004). Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows. Journal of Dairy Science, 87(10): 3461-3472. Doi: https://doi.org/10.3168/jds.S0022-0302(04)73481-5
  • Rius, A.G., Mcgilliard, M.L., Umberger, C.A. & Hanigan, M.D. (2010). Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cows. Journal of Dairy Science, 93(5): 2034-2043. Doi: https://doi.org/10.3168/jds.2008-1777
  • Robson, G.L.V., Filho, S.C.V., Diniz, R.V.F., Luciana, N.R., Veiga, P.P.R. & de Souza M.A. (2007). Effects of increasing dietary crude protein levels on nitrogen balance and metabolizable protein requirements for maintenance in Nellore cattle. Brazilian Journal of Veterinary Research and Animal Science, 36(4): 1212-1217. Doi:http://www.scielo.br/scielo.php?pid=S151635982007000500030&script=sci_abstract
  • Schwab, C.G. & Ordway, R.S. (2004). Balancing diets for amino acids: Implications of production efficiency and feed costs. Proceedings of Pennsylvania State Dairy Cattle Nutrition Workshop, Grantville, PA. 1-16p.
  • Schwab, C.G., Huhtanen, P., Hunt, C. & Hvelplund, T. (2005). Nitrogen requirements of cattle, In: Pfeffer, E. & Hristov, A. (Ed), Nitrogen and Phosphorus Nutrition of Cattle, 13–70p, CABI Publishing, Wallingford, UK. Schwab, C. G., L. D.
  • Schwab, C.G., Broderick, G.A. (2017). A 100-Year Review: Protein and amino acid nutrition in dairy cows. Journal of Dairy Science, 100:10094–10112. Doi: https://doi.org/10.3168/jds.2017-13320
  • Sok, M., Ouellet, D.R., Firkins, J.L., Pellerin, D. & Lapierre, H. (2017). Amino acid composition of rumen bacteria and protozoa in cattle. Journal of Dairy Science, 100:5241–5249. Doi: https://doi.org/10.3168/jds.2016-12447
  • Storm, E., Brown, D.S. & Ørskov, E.R. (1983). The nutritive value of rumen micro-organisms in ruminants. 3. The digestion of microbial amino and nucleic acids in, and losses of endogenous from, the small intestine of sheep. British Journal of Nutrition, 50:479–48 Doi: https://doi.org/10.1079/BJN19830116
  • Taghizadeh, A., Safamehr, A., Palangi, V. & Mehmannavaz, Y. (2008). The determination of metabolizable protein of some feedstuffs used in ruminants. Research Journal of Biological Sciences, 3(7): 804-806. Doi: http://medwelljournals.com/abstract/?doi=rjbsci.2008.804.806
  • Tas, M.V., Evans R.A. & Axford, R.F.E. (1981). The digestibility of amino acids in the small intestine of the sheep. British Journal of Nutrition, 45:167–174. Doi: https://doi.org/10.1079/BJN19810089
  • Tedeschi, L.O., Chalupa, W., Janczewski, E., Fox, D.G., Sniffen, C., Munson, R., Kononoff, P.J. & Boston R. (2008). Evaluation and application of the CPM Dairy Nutrition model. The Journal of Agricultural Science, 146:171–182. Doi: https://doi.org/10.1017/S0021859607007587
  • Tedeschi, L.O., Fox, D.G., Fonseca, M.A., & Cavalcanti, L.F.L. (2015). Invited Review: Models of protein and amino acid requirements for cattle. Revista Brasileira de Zootecnia, 44:109–132. Doi: http://dx.doi.org/10.1590/S1806-92902015000300005
  • Volden, H. (2011). NorFor–The Nordic Feed Evaluation System. EAAP Publication No. 130, Wageningen Academic Publishers, Wageningen, the Netherlands.
  • Wang, C., Liu, J.X., Yuan, Z.P., Wu, Y.M., Zhai, S.W. & Ye, H.W. (2007). Effect of level of metabolizable protein on milk production and nitrogen utilization in lactating dairy cows. Journal of Dairy Science, 90(6): 2960-2965. Doi: https://doi.org/10.3168/jds.2006-129
  • Wattiaux, M.A. (2017). Protein Metabolism in Dairy Cows. Babcock Institute for International Dairy Research and Development. University of Wisconsin-Madison https://federated.kb.wisc.edu/images/group226/52745/5.ProteinMetabolisminDairyCows.pdf,2017. Erişim tarihi: 27.02.2020.
  • Weiss, W.P., St-Pierre, N.R. & Willett, L.B. (2009). Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows. Journal of Dairy Science, 92(11): 5595-5606. Doi: https://doi.org/10.3168/jds.2009-2247
  • White, R.R., Roman-Garcia, Y., Firkins, J.L., Kononoff, P., VandeHaar, M.J., Tran, H., McGill, T., Garnett, R. (2017b). Hanigan MD. Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 2. Rumen degradable and undegradable protein. Journal of Dairy Science, 100:3611–3627. Doi: https://doi.org/10.3168/jds.2015-10800
  • Whitehouse, N., Schwab, C., Luchini, D., Tylutki, T. & Sloan, B. (2009). Comparison of optimal lysine and methionine concentrations in metabolizable protein estimated by the NRC (2001), CPM-Dairy (v.3.0.10) and ATMS. Cattle (v.2.1.1) models. Journal of Animal Science, 92 (Suppl. 1): 103. (Abstr.)
  • Whitlock, B.K., Vandehaar, M.J., Silva, L.F.P. & Tucker, H.A. (2002). Effect of dietary protein on prepubertal mammary development in rapidly growing dairy heifers. Journal of Dairy Science, 85(6): 1516-1525. Doi: https://doi.org/10.3168/jds.S0022-0302(02)74221-5

Metabolizable Protein Systems in Dairy Cattle Nutrition

Year 2020, Volume: 5 Issue: 2, 178 - 184, 30.06.2020
https://doi.org/10.35229/jaes.696143

Abstract

In recent years, significant improvements have been achieved in understanding protein nutrition in dairy cattle. The metabolizable protein(MEP) requirement is defined as the amount of protein that meets precisely the animal's maintenance and productions such as live weight gain, pregnancy and milk yield. This MEP consists of both microbial and also rumen undegradable protein(RUP) absorbed by the small intestine. Therefore, the preparation of ruminant diets using only the diet crude protein(HP) value is incorrect. Conventional feed analysis methods, such as Wende analysis and detergent analysis, accept the feed crude protein as a single unit; it does not take into account rumen degradability of feed protein fractions, microbial protein synthesis, intestinal flow rates and their absorption. Therefore, the diet prepared to meet the protein requirements of dairy cows should include not only HP as a source of diet protein, but also microbial HP synthesized in the rumen. Microbial protein(MP) systems, taking into account both factors, rumen degradable protein(RDP) and RUP, the individual rumen microbes and the synthesis of MP to meet the protein requirements of the animal as well as the estimation of the MEP and thus accurately determine protein requirements. The emergence of advanced nutritional models such as the Cornell Net Carbohydrate and Protein system(CNCPS), USA’s National Research Council(NRC), the UK's Agricultural Research Council(ARC), Cornell Penn Miner Milk and Amino Cow; the dietary formulation identifies the protein requirements at the intestinal level of dairy cows and demonstrates the necessity of switching from HP to MEP in preparing balanced diets that determine protein requirements for animals. In this review article, the objective is to evaluate the principles and concepts with the latest developments in MEP systems developed after the simple feeding system which considers only HP in protein nutrition of dairy cattle.

Project Number

-

References

  • Aboozar, M. (2012). Impacts of dietary metabolizable protein on performance and ruminal parameters of Holstein cows at early lactation, Research Opinions in Animal and Veterinary Sciences, 2(2): 102-108. Doi: http://www.roavs.com/pdf-files/Issue_2_2012/102-108.pdf
  • Arriola Apelo, S.I., Knapp, J.R. & Hanigan, M.D. (2014). Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. Journal of Dairy Science, 97:4000–4017. Doi: https://doi.org/10.3168/jds.2013-7392
  • Blouin, J.P., Bernier, J.F., Reynolds, C.K., Lobley, G.E., Dubreuilg, P. & Lapierre, H. (2002). Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows. Journal of Dairy Science, 85(10): 2618-2630. Doi: https://doi.org/10.3168/jds.S0022-0302(02)74347-6
  • Beever, D.E. & Cottrill, B.R. (1994). Protein systems for feeding ruminant livestock: A European assessment. Journal of Dairy Science, 77(7): 2031-2043. Doi: https://doi.org/10.3168/jds.S0022-0302(94)77148-4
  • Boston, R.C., Fox, D.G., Sniffen, C.J., Janczewski, R., Munsen, R. & Chalupa, W. (2000). Modelling Nutrient Utilization in Farm Animals, In: McNamara, J. P., France, J., & Beever D. (Ed), The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: The CPM Dairy project, 361-377p, CABI Publishing, Oxford, UK.
  • Broderick, G.A. & Colombini, S. (2010). In vitro methods to determine rate and extent of ruminal protein degradation, In: Crovetto, G. M. (Ed), In Energy and Protein Metabolism and Nutrition, 691–702p, EAAP Publication No. 127 Wageningen Academic Publishers, Wageningen, the Netherlands.
  • Broderick, G.A., Colombini, S., Costa, S., Karsli, M.A. & Faciola, A.P. (2016). Chemical and ruminal in vitro evaluation of Canadian canola meals produced over 4 years. Journal of Dairy Science, 99:7956–7970. Doi: https://doi.org/10.3168/jds.2016-11000
  • Burroughs, W., Trenkle, A. & Vetter, R.L. (1974). A system of protein evaluation for cattle and sheep involving metabolizable protein (amino acids) and urea fermentation potential of feedstuffs. Veterinary Medicine Small Animal Clinician, 69(6): 713. Doi: https://www.ncbi.nlm.nih.gov/pubmed/4494868
  • Castro, J.J., Arriola Apelo, S.I., Appuhamy, J.A.D.R.N. & Hanigan M.D. (2016). Development of a model describing regulation of casein synthesis by the mammary target of rapamycin (mTOR) signaling pathway in response to insulin, amino acids, and acetate. Journal of Dairy Science, 99:6714–6736. Doi: 10.3168/jds.2015-10591
  • Chase, L.E. (2011). Maintaining milk yield while lowering dietary protein content. WCDS Advances in dairy technology, 23: 153-164. Doi: https://wcds.ualberta.ca/wcds/wp-content/uploads/sites/57/wcds_archive/Archive/2011/Manuscripts/Chase.pdf
  • Chen, Z.H., Broderick, G.A., Luchini, N.D., Sloan, B.K. & Devillard, E. (2011). Effect of feeding different sources of rumen-protected methionine on milk production and N-utilization in lactating dairy cows. Journal of Dairy Science, 94:1978–1988. Doi: https://doi.org/10.3168/jds.2010-3578
  • CNCP. (2003). The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion. CNCPS Version 5.0., Cornell University, 130 Morrison Hall, Ethaca, New York.
  • Colin-Schoellen, O., Jorjanz, S. & Laurent, F. (2000). Metabolizable protein supply (PDIE) and restricted level of ruminally degradable nitrogen (PDIN) in total mixed rations: Effect on milk production and composition and on nitrogen utilization by dairy cows. Livestock Production Science, 67(1): 41-53. Doi: https://doi.org/10.1016/S0301-6226(00)00191-3
  • Curtis, R.V., Kim, J.J.M., Bajramaj, D.L., Doelman, J., Osborne, V.R. & Cant JP. (2014). Decline in mammary translational capacity during intravenous glucose infusion into lactating dairy cows. Journal of Dairy Science, 97:430–438. Doi: https://doi.org/10.3168/jds.2013-7252
  • Damiran, D. & Yu, P. (2012). Metabolic characteristics in ruminants of the protein in newly developed hull – less barley varieties with altered starch traits. Journal of Cereal Science, 55: 351-360. Doi: https://doi.org/10.1016/j.jcs.2012.01.006
  • Das, L.K., Kundu, S.S., Kumar, D. & Datt, C. (2014). The evaluation of metabolizable protein content of some indigenous feedstuffs used in ruminant nutrition. Vet World, 7(4): 257-261. Doi: http://www.veterinaryworld.org/Vol.7/April-2014/14.pdf
  • Doepel, L. & Lapierre, H. (2006). Challenges in protein nutrition for dairy cows. WCDS Advanced Dairy Science and Technology, 18: 57-67.
  • Edmunds, B., Suedekum, K.H., Spiekers, H. & Schwarz, F.J. (2012). Estimating ruminal crude protein degradation of forages using in situ and in vitro techniques. Animal Feed Science and Technology, 175:95–105. Doi: 10.1016/j.anifeedsci.2012.04.003
  • Fox, D.G., Tedeschi, L.O., Tylutki, T.P., Russell, J.B., Van Amburgh, M.E., Chase, L.E., Pell, A.N. & Overton T.R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology, 112:29–78. Doi: https://doi.org/10.1016/j.anifeedsci.2003.10.006
  • Haque, M.N., Rulquin, H., Andrade, A., Faverdin, P., Peyraud, J.L. & Lemosquet, S. (2012). Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. Journal of Dairy Science, 95:5876–5887. Doi: https://doi.org/10.3168/jds.2011-5230
  • Huhtanen, P., Rinne, M. & Nousiainen, J. (2008). Effects of silage soluble nitrogen components on metabolizable protein concentration: A meta analysis dairy cow production experiments. Journal of Dairy Science, 91(3): 1150-1158. Doi: https://doi.org/10.3168/jds.2007-0323
  • Huhtanen, P., Hetta, M. & Swensson, C. (2011). Evaluation of canola meal as a protein supplement for dairy cows: A review and a meta-analysis. Canadian Journal of Animal Science, 91: 529-543.
  • Krizsan, S.J., Ahvenjärvi, S., Volden, H. & Broderick, G.A. (2010). Estimation of rumen outflow in dairy cows fed grass silage-based diets by use of reticular sampling as an alternative to sampling from the omasal canal. Journal of Dairy Science, 93:1138–1147. Doi: 10.3168/jds.2009-2661
  • Lee, C., Hristov, A.N., Heyler, K.S., Cassidy, T.W., Long, M., Corl, B.A. & Karnati, S.K.R. (2011). Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. Journal of Dairy Science, 94(11): 5544-5557. Doi: 10.3168/jds.2010-3889.
  • Lee, C., Hristov, A.N., Cassidy, T.W., Heyler, K.S., Lapierre, H., Varga, G.A., de Veth, M.J. & Patton, R.A. (2012). Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. Journal of Dairy Science, 95:6042–6056. Doi: https://doi.org/10.3168/jds.2012-5581
  • Lee, C., Hristov, A.N., Heyler, K.S. & Cassidy, T.W. (2012). Effect of metabolizable protein supply and amino acid supplementation on nitrogen utilization, milk production, and ammonia emission from manure in dairy cows. Journal of Dairy Science, 95(9): 5253-5268. Doi: https://doi.org/10.3168/jds.2012-5366
  • Noftsger, S. & St-Pierre, N.R. (2003). Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. Journal of Dairy Science, 86:958–969. Doi: https://doi.org/10.3168/jds.S0022-0302(03)73679-0
  • NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th rev. ed. National Academy Press, Washington, DC.
  • Nuez Ortin, W. & Yu, P. (2010). Modeling the metabolic characteristics of proteins in dairy cattle from co-products of bioethanol processing: Comparison of the NRC 2001 model with DVE/OEB system. Journal of the Science of Food and Agriculture, 91(3): 405-411. Doi: 10.1002/jsfa.4199
  • O’Connor, J.D., Sniffen, C.J., Fox D.G. & Chalupa, W. (1993). A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. Journal of Animal Science, 71:1298–1311. Doi: https://doi.org/10.2527/1993.7151298x
  • Osorio, J.S., Ji, P., Drackley, J.K., Luchini, D. & Loor, J.J. (2013). Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and neutrophil function. Journal of Dairy Science, 96:6248–6263. Doi: https://doi.org/10.3168/jds.2012-5790
  • Pacheco, D., Schwab, C.G., Berthiaume, R., Raggio, G. & Lapierre, H. (2006). Comparison of net portal absorption with predicted flow of digestible amino acids: Scope for improving models. Journal of Dairy Science, 89:4747–4757. Doi: https://doi.org/10.3168/jds.S0022-0302(06)72524-3
  • Raggio, G., Pacheco, D., Berthiaume, R., Lobley, G.E. & Pellerin, D. (2004). Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows. Journal of Dairy Science, 87(10): 3461-3472. Doi: https://doi.org/10.3168/jds.S0022-0302(04)73481-5
  • Rius, A.G., Mcgilliard, M.L., Umberger, C.A. & Hanigan, M.D. (2010). Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cows. Journal of Dairy Science, 93(5): 2034-2043. Doi: https://doi.org/10.3168/jds.2008-1777
  • Robson, G.L.V., Filho, S.C.V., Diniz, R.V.F., Luciana, N.R., Veiga, P.P.R. & de Souza M.A. (2007). Effects of increasing dietary crude protein levels on nitrogen balance and metabolizable protein requirements for maintenance in Nellore cattle. Brazilian Journal of Veterinary Research and Animal Science, 36(4): 1212-1217. Doi:http://www.scielo.br/scielo.php?pid=S151635982007000500030&script=sci_abstract
  • Schwab, C.G. & Ordway, R.S. (2004). Balancing diets for amino acids: Implications of production efficiency and feed costs. Proceedings of Pennsylvania State Dairy Cattle Nutrition Workshop, Grantville, PA. 1-16p.
  • Schwab, C.G., Huhtanen, P., Hunt, C. & Hvelplund, T. (2005). Nitrogen requirements of cattle, In: Pfeffer, E. & Hristov, A. (Ed), Nitrogen and Phosphorus Nutrition of Cattle, 13–70p, CABI Publishing, Wallingford, UK. Schwab, C. G., L. D.
  • Schwab, C.G., Broderick, G.A. (2017). A 100-Year Review: Protein and amino acid nutrition in dairy cows. Journal of Dairy Science, 100:10094–10112. Doi: https://doi.org/10.3168/jds.2017-13320
  • Sok, M., Ouellet, D.R., Firkins, J.L., Pellerin, D. & Lapierre, H. (2017). Amino acid composition of rumen bacteria and protozoa in cattle. Journal of Dairy Science, 100:5241–5249. Doi: https://doi.org/10.3168/jds.2016-12447
  • Storm, E., Brown, D.S. & Ørskov, E.R. (1983). The nutritive value of rumen micro-organisms in ruminants. 3. The digestion of microbial amino and nucleic acids in, and losses of endogenous from, the small intestine of sheep. British Journal of Nutrition, 50:479–48 Doi: https://doi.org/10.1079/BJN19830116
  • Taghizadeh, A., Safamehr, A., Palangi, V. & Mehmannavaz, Y. (2008). The determination of metabolizable protein of some feedstuffs used in ruminants. Research Journal of Biological Sciences, 3(7): 804-806. Doi: http://medwelljournals.com/abstract/?doi=rjbsci.2008.804.806
  • Tas, M.V., Evans R.A. & Axford, R.F.E. (1981). The digestibility of amino acids in the small intestine of the sheep. British Journal of Nutrition, 45:167–174. Doi: https://doi.org/10.1079/BJN19810089
  • Tedeschi, L.O., Chalupa, W., Janczewski, E., Fox, D.G., Sniffen, C., Munson, R., Kononoff, P.J. & Boston R. (2008). Evaluation and application of the CPM Dairy Nutrition model. The Journal of Agricultural Science, 146:171–182. Doi: https://doi.org/10.1017/S0021859607007587
  • Tedeschi, L.O., Fox, D.G., Fonseca, M.A., & Cavalcanti, L.F.L. (2015). Invited Review: Models of protein and amino acid requirements for cattle. Revista Brasileira de Zootecnia, 44:109–132. Doi: http://dx.doi.org/10.1590/S1806-92902015000300005
  • Volden, H. (2011). NorFor–The Nordic Feed Evaluation System. EAAP Publication No. 130, Wageningen Academic Publishers, Wageningen, the Netherlands.
  • Wang, C., Liu, J.X., Yuan, Z.P., Wu, Y.M., Zhai, S.W. & Ye, H.W. (2007). Effect of level of metabolizable protein on milk production and nitrogen utilization in lactating dairy cows. Journal of Dairy Science, 90(6): 2960-2965. Doi: https://doi.org/10.3168/jds.2006-129
  • Wattiaux, M.A. (2017). Protein Metabolism in Dairy Cows. Babcock Institute for International Dairy Research and Development. University of Wisconsin-Madison https://federated.kb.wisc.edu/images/group226/52745/5.ProteinMetabolisminDairyCows.pdf,2017. Erişim tarihi: 27.02.2020.
  • Weiss, W.P., St-Pierre, N.R. & Willett, L.B. (2009). Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows. Journal of Dairy Science, 92(11): 5595-5606. Doi: https://doi.org/10.3168/jds.2009-2247
  • White, R.R., Roman-Garcia, Y., Firkins, J.L., Kononoff, P., VandeHaar, M.J., Tran, H., McGill, T., Garnett, R. (2017b). Hanigan MD. Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 2. Rumen degradable and undegradable protein. Journal of Dairy Science, 100:3611–3627. Doi: https://doi.org/10.3168/jds.2015-10800
  • Whitehouse, N., Schwab, C., Luchini, D., Tylutki, T. & Sloan, B. (2009). Comparison of optimal lysine and methionine concentrations in metabolizable protein estimated by the NRC (2001), CPM-Dairy (v.3.0.10) and ATMS. Cattle (v.2.1.1) models. Journal of Animal Science, 92 (Suppl. 1): 103. (Abstr.)
  • Whitlock, B.K., Vandehaar, M.J., Silva, L.F.P. & Tucker, H.A. (2002). Effect of dietary protein on prepubertal mammary development in rapidly growing dairy heifers. Journal of Dairy Science, 85(6): 1516-1525. Doi: https://doi.org/10.3168/jds.S0022-0302(02)74221-5
There are 51 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mirza Yiğithan Öğüt 0000-0003-4103-4736

Nurcan Çetinkaya 0000-0002-9977-2937

Project Number -
Publication Date June 30, 2020
Submission Date February 28, 2020
Acceptance Date May 31, 2020
Published in Issue Year 2020 Volume: 5 Issue: 2

Cite

APA Öğüt, M. Y., & Çetinkaya, N. (2020). Süt Sığırlarının Beslenmesinde Metabolize Edilebilir Protein Sistemleri. Journal of Anatolian Environmental and Animal Sciences, 5(2), 178-184. https://doi.org/10.35229/jaes.696143


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg