Review
BibTex RIS Cite

Can Covid-19 in Wastewater Be Removed by Membrane Processes? A brief review

Year 2021, Volume: 6 Issue: 2, 162 - 169, 30.06.2021
https://doi.org/10.35229/jaes.833234

Abstract

The world has faced many factors that cause pandemics for a century. There have been three major epidemics caused by coronaviruses in the last 17 years. The most recent outbreak, COVID-19, WHO announced outbreak from epidemic to global pandemic on March 11. More effort is needed to understand why they occur in different enviromental and the frequency of these outbreaks. When looking at the evidence based on wastewater, it is seen that the interest in the presence of coronavirus in wastewater has increased. Even if a broad study of information on the fate and possible contamination of the coronavirus in wastewater is not yet available, there is a few review with coronavirus in wastewater.
This article is the purpose of reviewing the literature regarding the emergence of coronaviruses in wastewater treatment processes. We discussed the literature on the presence, survival, and possible elimination of coronaviruses in common wastewater treatment processes. We also struggle to keep questions on the agenda about potential infection risks for people exposed to untreated sewage / wastewater. Therefore, we focused on the potential risk of coronavirus infection for workers in wastewater treatment plants and the public due to sewage networks.

References

  • Aani, S.A., Mustafa, T.N., Hilal, N., (2020). Ultrafiltration membranes for wastewater and water process engineering: a comprehensive statistical review over the past decade. J. Water Process Eng. 35, 101241.
  • Ahmed, W., Bertsch, P.M., Bivins, A., Bibby, K., Farkas, K.,Gathercole, A., Haramoto, E., Gyawali, P., Korajkic, A., McMinn, B.R., Mueller, J.F., Simpson, S.L., Smith, W.J.M., Symonds, E.M., Thomas, K.V., Verhagen, R., Kitajimal, M., (2020). Comparison of virus concentration methods for the RT-qPCR- based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 739, 139960.
  • C. Center for Disease Control. (2020). Interim Guidelines for Biosafety and COVID-19.
  • Chaudhry, R.M., Nelson, K.L., Drewes, J.E., (2015). Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environ. Sci. Technol., 49 (5), pp. 2815-2822.
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., Zhang, L., (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395, pp. 507-513, 10.1016/S0140-6736(20)30211-7.
  • Chen, Y., Wei, Q., Li, R., Gao, H., Zhu, H., Deng, W., Bao, L., Tong, W., Cong, Z., Jiang, H., Qin, C., (2020). Protection of Rhesus Macaque from SARS-Coronavirus Challenge by Recombinant Adenovirus Vaccine. bioRxiv 2020.02.17.951939, 10.1101/2020.02.17.951939.
  • Chin, A., Chu, J., Perera, M., Hui, K., Yen, H.L., Chan, M., Peiris, M., Poon, L.,(2020). Stability of SARS-CoV-2 in Different Environmental Conditions. medRxiv, pp. 2-5, 10.1101/2020.03.15.20036673.
  • Dennis, I., Sheena, A., Bux, K.F., (2020). Coronaviruses in wastewater processes-Source, fate and potential risks. Environment International. 143, 105962, https://doi.org/10.1016/j.envint.2020.105962
  • Derviş Hakim, G., Özer Sarı, S., (2020). Covid-19 and Gastrointestinal System. Tepecik Eğit. ve Araşt. Hast. Dergisi, 30(Ek sayı):112-7 doi:10.5222/terh.2020.9663.
  • Domagała, K.W., Jacquin, C., Borlaf, M., Sinnet, B., Julian, T., Kata, D., Graule, T.J., (2020). Efficiency and stability evaluation of Cu2O/MWCNTs filters for virus removal from water. Water Res. 179, 115879.
  • Farkas, K., Hillary, L.S., Malham, S.K., McDonald, J.E., Jones, D.L., (2020). Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Current Opinion in Environmental Science & Health. Volume 17, Pages 14-20 https://doi.org/10.1016/j.coesh.2020.06.001.
  • Gao, Q.Y., Chen, Y.X., Fang , J.Y., (2020). 2019 novel coronavirus infection and gastrointestinal tract. J. Dig. Dis., 1 (2) (2020), 10.1111/1751-2980.12851.
  • Gentilea, G.J., Cruz, M.C, Rajal, V.B., Cortalezzi, M.M.F., (2018). Electrostatic interactions in virus removal by ultrafiltration membranes. J. Environ. Chem. Eng. 6 (1) 1314–1321.
  • Goswami, K.P., G Pugazhenthi, G., (2020). Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water: a review. J. Environ. Manage. 268, 110583. DOI: 10.1016/j.jenvman.2020.110583.
  • Holshue, M.L., DeBolt, C., Lindquist, S.,Lofy., K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S.,Tural, A., Diaz, G., Cohn, A., Fox, L.,Patel, A., Gerber, S.I., , Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T. M., Pillai, S.K., (2020). First case of 2019 novel coronavirus in the United States. N Engl J Med. 382(10):929-936.
  • Im, D., Nakada, N., Fukuma, Y., Kato, Y.,Tanaka, H., (2018). Performance of combined ozonation, coagulation and ceramic membrane process for water reclamation: effects and mechanism of ozonation on virus coagulation. Separation Purification Technol. 192, 429–434. https://doi.org/10.1016/j.seppur.2017.10.044.
  • Im, D., Nakada, N., Kato, Y., Aoki, M., Tanaka, H., (2019). Pretreatment of ceramic membrane microfiltration in wastewater reuse: a comparison between ozonation and coagulation. J. Environ. Manage. 251, 109555. https://doi.org/10.1016/j.jenvman.2019.109555.
  • Indarto, A., Ikhsan, N.A., Wibowo, I, (2020). Chapter 20 - applications of carbon nanotubes for controlling waterborne pathogens. in: M.N. Vara Prasad. A. Grobelak (Eds.), Waterborne Pathogens, Butterworth-Heinemann, pp. 433–461.
  • Khuder, S.A., Arthur, T., Bisesi, M.S., Schaub, E.A., (1998). Prevalence of infectious diseases and associated symptoms in wastewater treatment workers. Am. J. Ind. Med., 33, pp. 571 577, 10.1002/(SICI)1097-0274(199806)33:6<571:AID-AJIM8>3.0.CO;2-T.
  • Kim, J.P., Kim, J.H., Kim, J., Lee, S.N., Park, H.O., (2016). A nanofilter composed of carbon nanotube-silver composites for virus removal and antibacterial activity improvement. J.Environ. Sci. 42 (2016) 275–283. https://doi.org/10.1016/j.jes.2014.11.017.
  • Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C.P., Hamilton, K.A., Haramoto, E., Rose, J.B., (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The Total Environment, Volume 739, 139076. https://doi.org/10.1016/j.scitotenv.2020.139076.
  • Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., P.Gerba, C., A.Hamilton, K., Haramoto, E., B.Rose, J., (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The Total Environment. 739, 139076. https://doi.org/10.1016/j.scitotenv.2020.139076.
  • Kuo, D.H.W., Simmons, F.J., Blair, S., Hart, E., Rose, J.B., Xagoraraki, I., (2010). Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater. Water Res., 44 (5) pp. 1520-1530.
  • Kuo, D., Liu, M., Kumar, K.R.S., Hamaguchi, K., Gan, K.P., Sakamoto, T., Ogawa, T., Kato, R., Miyamoto, N., Nada, H., Kimura, M., Henmi, M., Katayama, H., Kato, T., (2020). High virus removal by self-organized nanostructured 2D liquid- crystalline smectic membranes for water treatment. Small, 2001721 n/a (n/a) https://doi.org/10.1002/smll.202001721.
  • Kwarciak-Kozlowska, A., Wlodarczyk, R., (2020). Chapter 5 - treatment of waterborne pathogens by microfiltration, in: M.N. Vara Prasad. A. Grobelak (Eds.), Waterborne Pathogens, Butterworth-Heinemann, pp. 81–103.
  • Lee, N., Chan, P.K.S., Hui, D.S.C., Rainer, T.H., Wong, E., Choi, K.W., Lui, G.C.Y., Wong, B.C.K., Wong, R.Y.K., Lam, W.Y., Chu, I.M.T., Lai, R.W.M., Cockram, C.S., Sung, J.Y., (2009). Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J. Infect. Dis., 200, pp. 492-500, 10.1086/600383.
  • Lesimple, A., Y. Jasim, S., J. Johnson, D., Hilal, N., (2020). The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. Journal of Water Process Engineering 38, 101-544. https://doi.org/10.1016/j.jwpe.2020.101544.
  • Leung, W. K., To, K.F., Chan, P.K.S., Chan, H. L. Y., Wu, A.K.L., Lee, N., Yuen, K.Y., Sung, J.J. Y., (2003). Enteric involvement of severe acute respiratory syndrome - associated coronavirus infection. Gastroenterology, 125 (2003), pp. 1011-1017, 10.1016/j.gastro.2003.08.001.
  • Ling, Y., Xu, S.B.X., Lin, X., Tian, D., Zhu, Z.Q., Dai, F.H., Wu, F., Song, Z.G., Huang, W., Chen, J., Hu, B.J., Wang, S., Mao, E.Q., Zhu, L., Zhang, W.H., Zhou Lu, H.Z., (2020). Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). Published online Feb 28. doi: 10.1097/CM9.0000000000000774.
  • Miura, T., Schaeffer, J., Saux, J.C.L., Guyader, P.L.M and F.S.L., (2018). Virus typespecific removal in a full-scale membrane bioreactor treatment process. Food Environ. Virol. 10 (2), 176–186.
  • Mizumoto, K., Kagaya, K., Zarebski, A., Chowell, G., (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship. Yokohama, Japan, Eurosurveillance, 25, pp. 1-5, 10.2807/1560-7917.es.2020.25.10.2000180.
  • Neuman, B., Buchmeier, M.J., (2016). Supramolecular architecture of the coronavirus particle. In: Advances in virus research. Academic Press, 96. pp. 1–27. ISSN 0065-3527, https://doi.org/10.1016/bs.aivir.2016.08.005
  • Németh, Z., Szekeres, G.P., Schabikowski, M., Schrantz, K., Traber, J., Pronk, W., Hernádi, K., Graule, T., (2019). Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite. Royal Soc. Open Sci. 6 (1) 181294.
  • Nishiura, H., Kobayashi, T., Miyama, T., Suzuki, A., Jung, S.M., Hayashi, K., Kinoshita, R., Yang, Y., Yuan, B., Akhmetzhanov, A.R., Linton, N.M., (2020). Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 10.1016/j.ijid.2020.03.020.
  • Nqombolo, A., Mpupa, A., Moutloali, R., Nomngong, P.N., (2018). Wastewater treatment using membrane technology. Wastew. Water Qual., p. 29.
  • O’Brien, E., Xagoraraki, I., (2020). Removal of viruses in membrane bioreactors. J. Environ. Eng. 146 (7), 03120007.
  • Ojha, A., (2020). Chapter 19 - nanomaterials for removal of waterborne pathogens: opportunities and challenges, in: M.N. Vara Prasad. A. Grobelak (Eds.), Waterborne Pathogens, Butterworth-Heinemann, pp. 385–432.
  • Ong, S.W.X., Tan, Y.K., Chia, P.Y., Lee, T.H., Ng, O.T., Wong, M.S.Y., Marimuthu, K., (2020). Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. Published online Mar 4. DOI: 10.1001/jama.2020.3227.
  • Prado, T., Bruni, A.C., Barbosa, M.R.F., Garcia, S.C. Melo, A.M.J., Sato, M.I.Z., (2019) Performance of wastewater reclamation systems in enteric virus removal. Sci. Total Environ. 678, 33–42. DOI: 10.1016/j.scitotenv.2019.04.435.
  • Prado, T., Bruni, A.C., Barbosa, M.R.F., Garcia, S.C., Moreno, L.Z., Sato, M.I.Z., (2019). Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. Sci. Total Environ., 646, pp. 427-437
  • Pratelli, A., (2008). Canine coronavirus inactivation with physical and chemical agents. Veterinary Journal, 177, pp. 71-79, 10.1016/j.tvjl.2007.03.019.
  • Purnell, S., Ebdon, J., Buck, A., Tupper, M., Taylor, H., (2016). Removal ofphagesandviral pathogens in a full-scale MBR: implications for wastewater reuse and potable water. Water Res. 100, 20–27.
  • Rosa, G. L., Bonadonna, L., Lucentini, L., Kenmoe, S., Suffredini, E., (2020). Coronavirus in water environments: Occurrence, persistence and concentration methods -A scoping review. Water Research, 179, 115899, https://doi.org/10.1016/j.watres.2020.115899.
  • Sahu, J.N., Karri, R.R., Icon,Hossain M. Zabed, H.M., Xianghui Qi, X and S.S., (2019). Current perspectives and future prospects of nano-biotechnology in wastewater treatment. Separation Purification Rev. 1–20.
  • Simmons, F.J., Kuo, D.H.W., Xagoraraki, I., (2011). Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing. Water Res., 45 (9) pp. 2739-2750.
  • Smit, L., A.M., Spaan, S., Heederik, D., (2005). Endotoxin exposure and symptoms in wastewater treatment workers. Am. J. Ind. Med., 48, pp. 30-39, 10.1002/ajim.20176
  • Sinclair, T.R., et al., (2018). Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids and Surfaces A 551, 33–41.
  • Sinclair. R.G., Choi, C.Y., Riley, M.R.,Gerba, C.P., (2008). Pathogen surveillance through monitoring of sewer systems. Adv. Appl. Microbiol., 65, pp. 249-269, 10.1016/S0065-2164(08)00609-6.
  • Tang, A., Tong, Z., Wang, H., Dai, Y., Li, K., Liu, J., Wu, W., Yuan, C., Yu, M., Li, P., Yan, J., (2020). Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child. China. Emerg. Infect. Dis. 26, pp. 1-5, 10.3201/eid2606.200301.
  • Tang, C.Y., Tang, C.Y., Yang, Z.,Guo, H., Wen, J.J., Nghiem, L.D., Cornelissen, E., (2018). Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52 (18) 10215–10223.
  • Tschopp, A., Bernard, A., Thommen, A.M., Jeggli, S., Dumont, X., Oppliger, A., Hotz, P., (2011). Exposure to bioaerosols, respiratory health and lung-specific proteins: a prospective study in garbage and wastewater workers. Occup. Environ. Med., 68, pp. 856-859, 10.1136/oem.2010.060178 DOI: 10.1136/oem.2010.060178.
  • Wade, T., Sams, E., Brenner, K.P., Haugland, R., Chern, E., Beach, M., Wymer, L., Rankin, C.C., Love, D., Li, Q., Noble, R., Dufour, A.P., (2010). Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ. Health, 9, p. 66, 10.1093/ije/27.1.1
  • Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F., (2020). A novel coronavirus outbreak of global health concern. Lancet, 395 pp. 470-473, 10.1016/S0140-6736(20)30185-9.
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., Peng, Z., (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China, J. Am. Med. Assoc., 323, pp. 1061-1069, 10.1001/jama.2020.1585.
  • Wang , W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., Tan, W., (2020). Detection of SARS-CoV-2 in different types of clinical specimens. J. Am. Med. Assoc., pp. 3-4, 10.1001/jama.2020.3786.
  • Wang, X.W., Li, J.S., Guo, T.K., Zhen, B., Kong, Q.X., Yi, B., Song, Z.L.N., Jin, M., Xiao, W.J., Zhu, X.M., Gu, C.Q., Yin, J., Wei, W., Yao,W., Liu,C., Li,J.F., Ou, G.R., Wang, M.N., Fang, T.Y., Wang, G.J., HuiQiu, Y., Wu, H.H., Chao, F.H., Li, J.W., (2005). Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th hospital. J. Virol. Methods, 128, pp. 156-161, 10.1016/j.jviromet.2005.03.022
  • WHO (World Health Organization) Interim guidance 29 July 2020. Water, sanitation, hygiene, and waste management for SARS-CoV-2, the virus that causes COVID-19.
  • WHO (World Health Organization), (2020). Water, Sanitation, Hygiene, and Waste Management for the COVID-19 Virus: Interim Guidance.
  • Wigginton, K.R., Ye, Y., Ellenberg, R.M., (2015). Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. Environ. Sci. Water Res. Technol., 1, pp. 735-746, 10.1039/C5EW00125K.
  • Wölfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M.A., Niemeyer, D., Jones, T.C., Vollmar, P., Rothe,C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., Wendtner, C., (2020). Virological assessment of hospitalized cases of coronavirus disease 2019. Nature, 10.1038/s41586-020-2196-x.
  • Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., Shan, H., (2020). Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, doi: 10.1053/j.gastro.2020.02.055.
  • Xu, Y., Li, X., Zhu, B., Liang, H., Fang C., Gong, Y., Guo, Q., Sun, X., Zhao, D.,Shen, J., Zhang, H.,Liu, H., Xia, H., Tang, J., Zhang, K., Gong, S., (2020). Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med.
  • Yang, Z., Lı, G., Daı, X., Lıu, G., Lı, G., Jıe, Y., (2020). Three cases of novel coronavirus pneumonia with viral nucleic acids still positive in stool after throat swab detection turned negative. Chin J Dig. 40: E002- E002 (in Chinese).
  • Young, B.E., Ong , S.W.X., Kalimuddin, S., Low, J.G., Tan, S.Y., Loh, J., Ng, O.T, Marimuthu, K., Ang, L.W., Mak,T.M., Lau, S.K., Anderson, D.E., Chan, K.S.,Tan, T.Y., Ng, T.Y., Cui, L., Said, Z., Kurupatham, L., Chen, M.I.C., Chan, M., Vasoo, S., Wang, L.F., Tan, B.H., Lin, R.T.P., Lee, V.J.M., Leo, Y.S., Chien Lye, D.C., (2020). Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA.
  • Zhang, J.C., Wang, S.B., Xue, Y.D., (2020). Fekal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. published online Mar3. doi: 10.1002/jmv.25742.
  • Zhang, W., Du, R.H., Li, B., Zheng, X.S., Yang, X.L., Hu, B., Wang, Y.Y., Xiao, G.F., Yan, B., Shi, Z.L., Zhou, P., (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg. Microbes. Infect. 9: 386- 389.
  • Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H.N., Poon, V.K.M., Wen, L., Wong, B.H.Y., Zhao, X., Chiu, M.C., Yang, D., Wang, Y., Au-Yeung, R.K. H., Chan, I. H.Y., Sun, S., Chan, J.F.W., To, K.K.W., Memish, Z.A., Corman, V.M., Drosten, C., Hung, I.F.N., Zhou, Y., Leung, S.Y., Yuen, K.Y., (2017). Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci. Adv. 3, 10.1126/sciadv.aao4966.

ATIK SULARDAKİ COVID-19 MEMBRAN PROSESLERİYLE GİDERİLEBİLİR Mİ? KISA DERLEME

Year 2021, Volume: 6 Issue: 2, 162 - 169, 30.06.2021
https://doi.org/10.35229/jaes.833234

Abstract

Dünya, bir asırdır salgınlara neden olan birçok faktörle karşı karşıya kalmıştır. Son 17 yılda koronavirüslerin neden olduğu üç büyük salgın yaşandı. En son salgın olan COVID 19, DSÖ 11 Mart'ta salgından küresel salgına salgını duyurdu. Neden farklı çevrelerde ortaya çıktıklarını anlamak için atık suya dayalı kanıtlara bakıldığında, atık sularda koronavirüs varlığı dikkat çekmiştir. Koronavirüsün atık suda akıbeti ve olası kontaminasyonu hakkında geniş bir bilgi henüz mevcut olmasa da, atık suda koronavirüs ile ilgili araştırmalar bulunmaktadır. Bu çalışmada, COVID-19, atıksu ve atık su arıtma arasındaki ilişkiyi belirlemek için bir derleme planlanmıştır. Bu amaçla veritabanları araştırılmış ve 80 araştırma tespit edilmiştir. Bunların arasından, 66 araştırma çalışmaya dahil edilmiştir. Ayrıca yazar, arıtılmamış kanalizasyon / atık suya maruz kalan insanlar için olası enfeksiyon riskleri hakkındaki soruları gündemde tutmayı amaçlıyoruz. Atıksu, hemen hemen tüm araştırmalarda COVID-19 hastalık süreci açısından önemli bir risk faktörü olma ihtimali üzerinde durulmaktadır. COVID-19 ve atıksu ile ilgili daha ayrıntılı ve çok disiplinli araştırmalar, bilinmeyen ve öngörülemeyen COVID-19 salgını sürecinde değerli olacaktır.

References

  • Aani, S.A., Mustafa, T.N., Hilal, N., (2020). Ultrafiltration membranes for wastewater and water process engineering: a comprehensive statistical review over the past decade. J. Water Process Eng. 35, 101241.
  • Ahmed, W., Bertsch, P.M., Bivins, A., Bibby, K., Farkas, K.,Gathercole, A., Haramoto, E., Gyawali, P., Korajkic, A., McMinn, B.R., Mueller, J.F., Simpson, S.L., Smith, W.J.M., Symonds, E.M., Thomas, K.V., Verhagen, R., Kitajimal, M., (2020). Comparison of virus concentration methods for the RT-qPCR- based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 739, 139960.
  • C. Center for Disease Control. (2020). Interim Guidelines for Biosafety and COVID-19.
  • Chaudhry, R.M., Nelson, K.L., Drewes, J.E., (2015). Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environ. Sci. Technol., 49 (5), pp. 2815-2822.
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., Zhang, L., (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395, pp. 507-513, 10.1016/S0140-6736(20)30211-7.
  • Chen, Y., Wei, Q., Li, R., Gao, H., Zhu, H., Deng, W., Bao, L., Tong, W., Cong, Z., Jiang, H., Qin, C., (2020). Protection of Rhesus Macaque from SARS-Coronavirus Challenge by Recombinant Adenovirus Vaccine. bioRxiv 2020.02.17.951939, 10.1101/2020.02.17.951939.
  • Chin, A., Chu, J., Perera, M., Hui, K., Yen, H.L., Chan, M., Peiris, M., Poon, L.,(2020). Stability of SARS-CoV-2 in Different Environmental Conditions. medRxiv, pp. 2-5, 10.1101/2020.03.15.20036673.
  • Dennis, I., Sheena, A., Bux, K.F., (2020). Coronaviruses in wastewater processes-Source, fate and potential risks. Environment International. 143, 105962, https://doi.org/10.1016/j.envint.2020.105962
  • Derviş Hakim, G., Özer Sarı, S., (2020). Covid-19 and Gastrointestinal System. Tepecik Eğit. ve Araşt. Hast. Dergisi, 30(Ek sayı):112-7 doi:10.5222/terh.2020.9663.
  • Domagała, K.W., Jacquin, C., Borlaf, M., Sinnet, B., Julian, T., Kata, D., Graule, T.J., (2020). Efficiency and stability evaluation of Cu2O/MWCNTs filters for virus removal from water. Water Res. 179, 115879.
  • Farkas, K., Hillary, L.S., Malham, S.K., McDonald, J.E., Jones, D.L., (2020). Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Current Opinion in Environmental Science & Health. Volume 17, Pages 14-20 https://doi.org/10.1016/j.coesh.2020.06.001.
  • Gao, Q.Y., Chen, Y.X., Fang , J.Y., (2020). 2019 novel coronavirus infection and gastrointestinal tract. J. Dig. Dis., 1 (2) (2020), 10.1111/1751-2980.12851.
  • Gentilea, G.J., Cruz, M.C, Rajal, V.B., Cortalezzi, M.M.F., (2018). Electrostatic interactions in virus removal by ultrafiltration membranes. J. Environ. Chem. Eng. 6 (1) 1314–1321.
  • Goswami, K.P., G Pugazhenthi, G., (2020). Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water: a review. J. Environ. Manage. 268, 110583. DOI: 10.1016/j.jenvman.2020.110583.
  • Holshue, M.L., DeBolt, C., Lindquist, S.,Lofy., K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S.,Tural, A., Diaz, G., Cohn, A., Fox, L.,Patel, A., Gerber, S.I., , Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T. M., Pillai, S.K., (2020). First case of 2019 novel coronavirus in the United States. N Engl J Med. 382(10):929-936.
  • Im, D., Nakada, N., Fukuma, Y., Kato, Y.,Tanaka, H., (2018). Performance of combined ozonation, coagulation and ceramic membrane process for water reclamation: effects and mechanism of ozonation on virus coagulation. Separation Purification Technol. 192, 429–434. https://doi.org/10.1016/j.seppur.2017.10.044.
  • Im, D., Nakada, N., Kato, Y., Aoki, M., Tanaka, H., (2019). Pretreatment of ceramic membrane microfiltration in wastewater reuse: a comparison between ozonation and coagulation. J. Environ. Manage. 251, 109555. https://doi.org/10.1016/j.jenvman.2019.109555.
  • Indarto, A., Ikhsan, N.A., Wibowo, I, (2020). Chapter 20 - applications of carbon nanotubes for controlling waterborne pathogens. in: M.N. Vara Prasad. A. Grobelak (Eds.), Waterborne Pathogens, Butterworth-Heinemann, pp. 433–461.
  • Khuder, S.A., Arthur, T., Bisesi, M.S., Schaub, E.A., (1998). Prevalence of infectious diseases and associated symptoms in wastewater treatment workers. Am. J. Ind. Med., 33, pp. 571 577, 10.1002/(SICI)1097-0274(199806)33:6<571:AID-AJIM8>3.0.CO;2-T.
  • Kim, J.P., Kim, J.H., Kim, J., Lee, S.N., Park, H.O., (2016). A nanofilter composed of carbon nanotube-silver composites for virus removal and antibacterial activity improvement. J.Environ. Sci. 42 (2016) 275–283. https://doi.org/10.1016/j.jes.2014.11.017.
  • Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C.P., Hamilton, K.A., Haramoto, E., Rose, J.B., (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The Total Environment, Volume 739, 139076. https://doi.org/10.1016/j.scitotenv.2020.139076.
  • Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., P.Gerba, C., A.Hamilton, K., Haramoto, E., B.Rose, J., (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The Total Environment. 739, 139076. https://doi.org/10.1016/j.scitotenv.2020.139076.
  • Kuo, D.H.W., Simmons, F.J., Blair, S., Hart, E., Rose, J.B., Xagoraraki, I., (2010). Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater. Water Res., 44 (5) pp. 1520-1530.
  • Kuo, D., Liu, M., Kumar, K.R.S., Hamaguchi, K., Gan, K.P., Sakamoto, T., Ogawa, T., Kato, R., Miyamoto, N., Nada, H., Kimura, M., Henmi, M., Katayama, H., Kato, T., (2020). High virus removal by self-organized nanostructured 2D liquid- crystalline smectic membranes for water treatment. Small, 2001721 n/a (n/a) https://doi.org/10.1002/smll.202001721.
  • Kwarciak-Kozlowska, A., Wlodarczyk, R., (2020). Chapter 5 - treatment of waterborne pathogens by microfiltration, in: M.N. Vara Prasad. A. Grobelak (Eds.), Waterborne Pathogens, Butterworth-Heinemann, pp. 81–103.
  • Lee, N., Chan, P.K.S., Hui, D.S.C., Rainer, T.H., Wong, E., Choi, K.W., Lui, G.C.Y., Wong, B.C.K., Wong, R.Y.K., Lam, W.Y., Chu, I.M.T., Lai, R.W.M., Cockram, C.S., Sung, J.Y., (2009). Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J. Infect. Dis., 200, pp. 492-500, 10.1086/600383.
  • Lesimple, A., Y. Jasim, S., J. Johnson, D., Hilal, N., (2020). The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. Journal of Water Process Engineering 38, 101-544. https://doi.org/10.1016/j.jwpe.2020.101544.
  • Leung, W. K., To, K.F., Chan, P.K.S., Chan, H. L. Y., Wu, A.K.L., Lee, N., Yuen, K.Y., Sung, J.J. Y., (2003). Enteric involvement of severe acute respiratory syndrome - associated coronavirus infection. Gastroenterology, 125 (2003), pp. 1011-1017, 10.1016/j.gastro.2003.08.001.
  • Ling, Y., Xu, S.B.X., Lin, X., Tian, D., Zhu, Z.Q., Dai, F.H., Wu, F., Song, Z.G., Huang, W., Chen, J., Hu, B.J., Wang, S., Mao, E.Q., Zhu, L., Zhang, W.H., Zhou Lu, H.Z., (2020). Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). Published online Feb 28. doi: 10.1097/CM9.0000000000000774.
  • Miura, T., Schaeffer, J., Saux, J.C.L., Guyader, P.L.M and F.S.L., (2018). Virus typespecific removal in a full-scale membrane bioreactor treatment process. Food Environ. Virol. 10 (2), 176–186.
  • Mizumoto, K., Kagaya, K., Zarebski, A., Chowell, G., (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship. Yokohama, Japan, Eurosurveillance, 25, pp. 1-5, 10.2807/1560-7917.es.2020.25.10.2000180.
  • Neuman, B., Buchmeier, M.J., (2016). Supramolecular architecture of the coronavirus particle. In: Advances in virus research. Academic Press, 96. pp. 1–27. ISSN 0065-3527, https://doi.org/10.1016/bs.aivir.2016.08.005
  • Németh, Z., Szekeres, G.P., Schabikowski, M., Schrantz, K., Traber, J., Pronk, W., Hernádi, K., Graule, T., (2019). Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite. Royal Soc. Open Sci. 6 (1) 181294.
  • Nishiura, H., Kobayashi, T., Miyama, T., Suzuki, A., Jung, S.M., Hayashi, K., Kinoshita, R., Yang, Y., Yuan, B., Akhmetzhanov, A.R., Linton, N.M., (2020). Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 10.1016/j.ijid.2020.03.020.
  • Nqombolo, A., Mpupa, A., Moutloali, R., Nomngong, P.N., (2018). Wastewater treatment using membrane technology. Wastew. Water Qual., p. 29.
  • O’Brien, E., Xagoraraki, I., (2020). Removal of viruses in membrane bioreactors. J. Environ. Eng. 146 (7), 03120007.
  • Ojha, A., (2020). Chapter 19 - nanomaterials for removal of waterborne pathogens: opportunities and challenges, in: M.N. Vara Prasad. A. Grobelak (Eds.), Waterborne Pathogens, Butterworth-Heinemann, pp. 385–432.
  • Ong, S.W.X., Tan, Y.K., Chia, P.Y., Lee, T.H., Ng, O.T., Wong, M.S.Y., Marimuthu, K., (2020). Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. Published online Mar 4. DOI: 10.1001/jama.2020.3227.
  • Prado, T., Bruni, A.C., Barbosa, M.R.F., Garcia, S.C. Melo, A.M.J., Sato, M.I.Z., (2019) Performance of wastewater reclamation systems in enteric virus removal. Sci. Total Environ. 678, 33–42. DOI: 10.1016/j.scitotenv.2019.04.435.
  • Prado, T., Bruni, A.C., Barbosa, M.R.F., Garcia, S.C., Moreno, L.Z., Sato, M.I.Z., (2019). Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. Sci. Total Environ., 646, pp. 427-437
  • Pratelli, A., (2008). Canine coronavirus inactivation with physical and chemical agents. Veterinary Journal, 177, pp. 71-79, 10.1016/j.tvjl.2007.03.019.
  • Purnell, S., Ebdon, J., Buck, A., Tupper, M., Taylor, H., (2016). Removal ofphagesandviral pathogens in a full-scale MBR: implications for wastewater reuse and potable water. Water Res. 100, 20–27.
  • Rosa, G. L., Bonadonna, L., Lucentini, L., Kenmoe, S., Suffredini, E., (2020). Coronavirus in water environments: Occurrence, persistence and concentration methods -A scoping review. Water Research, 179, 115899, https://doi.org/10.1016/j.watres.2020.115899.
  • Sahu, J.N., Karri, R.R., Icon,Hossain M. Zabed, H.M., Xianghui Qi, X and S.S., (2019). Current perspectives and future prospects of nano-biotechnology in wastewater treatment. Separation Purification Rev. 1–20.
  • Simmons, F.J., Kuo, D.H.W., Xagoraraki, I., (2011). Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing. Water Res., 45 (9) pp. 2739-2750.
  • Smit, L., A.M., Spaan, S., Heederik, D., (2005). Endotoxin exposure and symptoms in wastewater treatment workers. Am. J. Ind. Med., 48, pp. 30-39, 10.1002/ajim.20176
  • Sinclair, T.R., et al., (2018). Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids and Surfaces A 551, 33–41.
  • Sinclair. R.G., Choi, C.Y., Riley, M.R.,Gerba, C.P., (2008). Pathogen surveillance through monitoring of sewer systems. Adv. Appl. Microbiol., 65, pp. 249-269, 10.1016/S0065-2164(08)00609-6.
  • Tang, A., Tong, Z., Wang, H., Dai, Y., Li, K., Liu, J., Wu, W., Yuan, C., Yu, M., Li, P., Yan, J., (2020). Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child. China. Emerg. Infect. Dis. 26, pp. 1-5, 10.3201/eid2606.200301.
  • Tang, C.Y., Tang, C.Y., Yang, Z.,Guo, H., Wen, J.J., Nghiem, L.D., Cornelissen, E., (2018). Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52 (18) 10215–10223.
  • Tschopp, A., Bernard, A., Thommen, A.M., Jeggli, S., Dumont, X., Oppliger, A., Hotz, P., (2011). Exposure to bioaerosols, respiratory health and lung-specific proteins: a prospective study in garbage and wastewater workers. Occup. Environ. Med., 68, pp. 856-859, 10.1136/oem.2010.060178 DOI: 10.1136/oem.2010.060178.
  • Wade, T., Sams, E., Brenner, K.P., Haugland, R., Chern, E., Beach, M., Wymer, L., Rankin, C.C., Love, D., Li, Q., Noble, R., Dufour, A.P., (2010). Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ. Health, 9, p. 66, 10.1093/ije/27.1.1
  • Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F., (2020). A novel coronavirus outbreak of global health concern. Lancet, 395 pp. 470-473, 10.1016/S0140-6736(20)30185-9.
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., Peng, Z., (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China, J. Am. Med. Assoc., 323, pp. 1061-1069, 10.1001/jama.2020.1585.
  • Wang , W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., Tan, W., (2020). Detection of SARS-CoV-2 in different types of clinical specimens. J. Am. Med. Assoc., pp. 3-4, 10.1001/jama.2020.3786.
  • Wang, X.W., Li, J.S., Guo, T.K., Zhen, B., Kong, Q.X., Yi, B., Song, Z.L.N., Jin, M., Xiao, W.J., Zhu, X.M., Gu, C.Q., Yin, J., Wei, W., Yao,W., Liu,C., Li,J.F., Ou, G.R., Wang, M.N., Fang, T.Y., Wang, G.J., HuiQiu, Y., Wu, H.H., Chao, F.H., Li, J.W., (2005). Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th hospital. J. Virol. Methods, 128, pp. 156-161, 10.1016/j.jviromet.2005.03.022
  • WHO (World Health Organization) Interim guidance 29 July 2020. Water, sanitation, hygiene, and waste management for SARS-CoV-2, the virus that causes COVID-19.
  • WHO (World Health Organization), (2020). Water, Sanitation, Hygiene, and Waste Management for the COVID-19 Virus: Interim Guidance.
  • Wigginton, K.R., Ye, Y., Ellenberg, R.M., (2015). Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. Environ. Sci. Water Res. Technol., 1, pp. 735-746, 10.1039/C5EW00125K.
  • Wölfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M.A., Niemeyer, D., Jones, T.C., Vollmar, P., Rothe,C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., Wendtner, C., (2020). Virological assessment of hospitalized cases of coronavirus disease 2019. Nature, 10.1038/s41586-020-2196-x.
  • Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., Shan, H., (2020). Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, doi: 10.1053/j.gastro.2020.02.055.
  • Xu, Y., Li, X., Zhu, B., Liang, H., Fang C., Gong, Y., Guo, Q., Sun, X., Zhao, D.,Shen, J., Zhang, H.,Liu, H., Xia, H., Tang, J., Zhang, K., Gong, S., (2020). Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med.
  • Yang, Z., Lı, G., Daı, X., Lıu, G., Lı, G., Jıe, Y., (2020). Three cases of novel coronavirus pneumonia with viral nucleic acids still positive in stool after throat swab detection turned negative. Chin J Dig. 40: E002- E002 (in Chinese).
  • Young, B.E., Ong , S.W.X., Kalimuddin, S., Low, J.G., Tan, S.Y., Loh, J., Ng, O.T, Marimuthu, K., Ang, L.W., Mak,T.M., Lau, S.K., Anderson, D.E., Chan, K.S.,Tan, T.Y., Ng, T.Y., Cui, L., Said, Z., Kurupatham, L., Chen, M.I.C., Chan, M., Vasoo, S., Wang, L.F., Tan, B.H., Lin, R.T.P., Lee, V.J.M., Leo, Y.S., Chien Lye, D.C., (2020). Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA.
  • Zhang, J.C., Wang, S.B., Xue, Y.D., (2020). Fekal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. published online Mar3. doi: 10.1002/jmv.25742.
  • Zhang, W., Du, R.H., Li, B., Zheng, X.S., Yang, X.L., Hu, B., Wang, Y.Y., Xiao, G.F., Yan, B., Shi, Z.L., Zhou, P., (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg. Microbes. Infect. 9: 386- 389.
  • Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H.N., Poon, V.K.M., Wen, L., Wong, B.H.Y., Zhao, X., Chiu, M.C., Yang, D., Wang, Y., Au-Yeung, R.K. H., Chan, I. H.Y., Sun, S., Chan, J.F.W., To, K.K.W., Memish, Z.A., Corman, V.M., Drosten, C., Hung, I.F.N., Zhou, Y., Leung, S.Y., Yuen, K.Y., (2017). Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci. Adv. 3, 10.1126/sciadv.aao4966.
There are 67 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Yasemin Yıldız 0000-0003-2855-0496

Publication Date June 30, 2021
Submission Date November 29, 2020
Acceptance Date February 27, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Yıldız, Y. (2021). Can Covid-19 in Wastewater Be Removed by Membrane Processes? A brief review. Journal of Anatolian Environmental and Animal Sciences, 6(2), 162-169. https://doi.org/10.35229/jaes.833234


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS