Research Article
BibTex RIS Cite

Farklı Sürelerde Soğukta Depolamanın Tenebrio molitor (Coleoptera: Tenebrionidae) Larvalarının Toplam Lipid Miktarına Etkisi

Year 2021, Volume: 6 Issue: 3, 449 - 455, 28.09.2021
https://doi.org/10.35229/jaes.970307

Abstract

Gittikçe artan dünya nüfusu Tenebrio molitor gibi canlı yem hatta bazı ülkelerde insan yiyeceği olarak kullanılan böcekleri alternatif besin kaynağı olarak değerlendirmemizin kaçınılmaz olduğunun habercisidir. Özellikle T. molitor larvaları fazlaca yağ ve protein içermesinden dolayı besleyici değeri yüksek bir besin kaynağıdır. Bu çalışma ‘soğukta bekletildiği sürelerde böcek lipit kaynaklarını korumaya devam mı edecektir ya da geliştirdiği fizyolojik adaptasyonlar yeterli kalmayıp enerji kaynaklarını kullanmaya devam mı edecektir’ sorularına cevap aramaktadır. Bu çalışmanın ana malzemesini T. molitor kültürleri oluşturdu. Besin olarak 1:1 oranında un:buğday unu (250 g:250 g) kullanıldı. İçerisine 25 gr rüşeym, 5 gr kuru maya konuldu. 13-15. larval aşamadaki larvalar kontrol ve deneme grupları oluşturularak belirtilen sıcaklıklarda 5, 10, 15 ve 20 gün süre ile bekletildi. Depolama süreleri biten larvaların ağırlıkları, toplam lipid miktarı ve yüzdeleri tespit edildi. Bu çalışmada farklı sürelerde buzdolabında depolanan T. molitor larvalarının toplam lipid miktarları ve yüzdeleri değerlendirildi. Soğukta 5, 10 ve 15 gün depolanan larvaların toplam lipid miktarları ve yüzdelerinin kontrol grubuna göre daha fazla olduğu belirlendi. 20 gün bekletilen larvalarda ise azalma eğilimi gözlendi. Sonuç olarak yetiştiricilere 15 günden fazla buzdolabında bekletmemeleri önerilmektedir. Aksi takdirde lipid gibi önemli enerji ve besin kaynaklarının azalabileceği göz önüne alınmalıdır.

References

  • Adámková, A., Adámek, M., Mlček, J., Borkovcová, M., Bednářová, M., Kouřimská, L., Skácel, J. & Vítová, E. (2017). Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 460-465. https://doi.org/10.5219/779
  • Adámková, A., Mlček, J., Adámek, M., Borkovcová, M., Bednářová, M., Hlobilová, V., Knížková, I. & Juríková, T. (2020). Tenebrio molitor (Coleoptera:Tenebrionidae)- optimization of rearing conditions to obtain desired nutritional values. Journal of Insect Science, 20, 1–10. https://doi.org/10.1093/jisesa/ieaa100
  • Aguila, J.R., Suszko, J., Gibbs, A.G. & Hoshizaki, D.K. (2007). The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimantal Biology, 210(6), 956-963. https://doi.org/10.1242/jeb.001586
  • Aman, P., Frederich, M., Megido, R.C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G. & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337–340. https://doi.org/10.1016/j.aspen.2017.02.001
  • Arrese, E.L. & Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, 55, 207–225. https://doi.org/10.1146/annurev-ento-112408-085356
  • Azeez, O.I., Meintjes, R. & Chamunorwa, J.P. (2014). Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus. Lipids in Health and Disease, 13(71), 2-13. https://doi.org/10.1186/1476-511X-13-71
  • Belluco, S., Losass C., Maggioletti, M., Alonzi, C.C., Paoletti, M.G. & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296-313. https://doi.org/10.1111/1541-4337.12014
  • Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N.M., Murta, D., Nunes, R. & Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS Journal, 21, 57–64. https://doi.org/10.1016/j.nfs.2020.10.001
  • Danthine, S., Blecker, C., Paul, A., Frederich, M., Taofic, A., Lognay, G., Fauconier, M.L. & Francis, F. (2013). Physicochemical properties of lipids extracted from Tenebrio molitor larvae. Food Science and Formulations, IFCON. December 2013, India.
  • Dooremalen, C. & Ellers, J. (2010). A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod. Journal of Insect Physiology, 56(2), 178-84. https://doi.org/10.1016/j.jinsphys.2009.10.002
  • Dreassi, E., Cito, A., Zanfini, A., Materozzi, L., Botta, M. & Francardi, V. (2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52(3), 285–294. https://doi.org/10.1007/s11745-016-4220-3
  • Duman, J.G., Wu, D.W., Xu, L., Tursman, D. & Olsen, T.M. (1991). Adaptations of insects to subzero temperature. The Quarterly Review of Biology, 66, 387-410.
  • Errico, S,, Dimatteo, S., Moliterni, S. & Baldacchino, F. (2021). Effects of long-lasting cold storage on Tenebrio molitor larvae (Coleoptera: Tenebrionidae). Journal of Insects as Food and Feed, 3, 1-6. https://doi.org/10.3920/JIFF2020.0162 Finkel, A.J. (1948). The lipid composition of Tenebrio molitor larvae. Physiological Zoology, 21(2), 111-133.
  • Folch, J., Lees, M. & Stanley, S.G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. https://doi.org/10.1016/s0021-9258(18)64849-5
  • Graham, A.L., Walker, V.K. & Davies, P.L. (2000). Developmental and environmental regulation of antifreese proteins in the mealworm beetle Tenebrio molitor. Europan Journal of Biochemistry, 267(21), 6452-6458. https://doi.org/10.1046/j.1432-1327.2000.01734.x
  • Halloran, A., Muenke, C., Vantomme, P. & Van Huis, A. (2014). Insects in the human food chain: global status and opportunities. Food Chain, 4(2), 103-118. https://doi.org/10.3362/2046-1887.2014.011
  • Helgadóttir, F., Toft, S. & Sigsgaard, L. (2017). Negative effects of low developmental temperatures on Aphid predation by Orius majusculus (Heteroptera: Anthocoridae). Biological Control, 114, 59–64. https://doi.org/10.1016/j.biocontrol.2017.08.002
  • Irwin, J.T. & Lee, R.E.Jr. (2003). Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos, 100(1), 71-78. https://doi.org/10.1034/j.1600-0706.2003.11738.x
  • Jajić, I., Popović, A., Urošević, M.I., Krstović, S., Petrović, M., Guljaš, D. & Samardžić, M. (2020). Fatty and amino acid profile of mealworm larvae (Tenebrio molitor l.) Biotechnology in Animal Husbandry, 36(2), 167-180. https://doi.org/10.2298/BAH2002167J
  • Jajić, I., Popović, A., Urošević, M.I., Krstović, S., Petrović, M. & Guljaš, D. (2019). Chemical composition of mealworm larvae (Tenebrio molitor) reared in Serbia. Contemporary Agriculture, 68(1-2), 23-27. https://doi.org/10.2478/contagri-2019-0005
  • Jones, L.D., Cooper, R.W. & Harding, R.S. (1972). Composition of mealworm Tenebrio molitor larvae. The Journal of Zoo Animal Medicine, 3(4), 34-41.
  • Kelemu, S., Niassy, S., Torto, B., Fiaboe, K., Affognon, H., Tonnang, H., Maniania N.K. & Ekesi, S. (2015). African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. Journal of Insects as Food and Feed 1(2), 103-119. https://doi.org/10.3920/JIFF2014.0016
  • Kröncke, N., Grebenteuch, S., Keil, C., Demtröder, S., Kroh, L., Thünemann, A.F., Benning, R. & Haase, H. (2019). Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects, 10(4), 2-13. https://doi.org/10.3390/insects10040084
  • Lee, E.R., Costanzo, J.P. & Mugnano, A. (1996). Regulation of suercooling and ice nucleation in insects. Eurepan Journal of Entomology, 93(3), 405-418.
  • Liu, Y., Liu, H., Liu, S., Wang, S., Jiang, R. & Li, S. (2009). Hormonal and nutritional regulation of insect fat body development and function. Archives of Insect Biochemistry and Physiology, 71(1), 16–30. https://doi.org/10.1002/arch.20290
  • Liu, C., Masri, J., Perez, V., Maya, C. & Zhao, J. (2020). Growth performance and nutrient composition of mealworms (Tenebrio Molitor) fed on fresh plant materials-supplemented diets. Foods, 9(2), 151. https://doi.org/10.3390/foods9020151
  • Marshall, K.E. & Sinclair, B.J. (2012). Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften 99, 33-41.
  • Melis, R., Braca, A., Mulas, G., Sanna, R., Spadaa, S., Serrab, G., Faddab, M.L., Roggioa, T., Uzzaua, S. & Aneddaa, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science and Emerging Technologies, 48, 138–149. https://doi.org/10.1016/j.ifset.2018.06.003
  • Mirzaeva, D.A., Khujamshukurov, N.A., Zokirov, B., Soxibov, B.O. & Kuchkarova, DKh. (2020). Influence of temperature and humidity on the development of Tenebrio molitor L. International Journal of Current Microbiology and Applied Sciences, 9(4), 3544-3559. https://doi.org/10.20546/ijcmas.2020.905.422
  • Mlček, J., Adámková, A., Adámek, M., Borkovcová, M., Bednářová, M. & Knížková, I. (2019). Fat from Tenebrionidae bugs – sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journan of Food and Nutrition Sciences, 69(3), 247–254. https://doi.org/10.31883/pjfns/109666
  • Morales-Ramos, J.A., Rojas, M.G, Shelby, K.S. & Coudron, T.A. (2015). Nutritional value of pupae versus larvae of Tenebrio molitor (Coleoptera: Tenebrionidae) as food for rearing Podisus maculiventris (Heteroptera: Pentatomidae). Journal of Economical Entomology, 109(2), 564–571. https://doi.org/10.1093/jee/tov338
  • Ochieng-Odero, J.P.R. (1992). The effect of three constant temperatures on larval critical weight, latent feding period, larval maximal weight and fecundity of Cnephasia jactatana (Walker) (Lepidoptera: Tortricidae). Journal of Insect Physiology, 38(2), 127-130. https://doi.org/10.1016/0022-1910(92)90041-B
  • Patterson, J.L. & Duman J.G. (1978). The role of the thermal hysteresis factor in Tenebrio molitor larvae. Journal of Experimental Biology, 74(1), 37-45. https://doi.org/10.1242/jeb.74.1.37
  • Rathee, M. & Ram, P. (2018). Impact of cold storage on the performance of entomophagous insects: an overview. Phytoparasitica, 46(6), 4-32. https://doi.org/10.1007/s12600-018-0683-5
  • Ravzanaadii, N., Kim, S., Choi, W.H., Hong, S. & Kim, N.J. (2012). Nutritional value of mealworm, Tenebrio molitor as food source. International Journal of Industrial Entomology, 25(1), 93-98. https://doi.org/10.7852/ijie.2012.25.1.093
  • Pant, R. & Gupta K.W. (1979). The effect of exposure to low temperature on the metabolism of carbohydrates, lipids and protein in the larvae of Philosamia ricini. Journal of Bioscience, 1(4), 441–446.
  • Sasmita, H.I., Tu, W., Bong, L. & Neoh, K. (2019). Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Vectors, 12, 2-16 https://doi.org/10.1186/s13071-019-3830-z
  • Scaccini, D., Vanishvili, L., Tirello, P., Walton, V.M., Duso, C. & Pozzebon, A. (2019). Lethal and sub‑lethal effects of low‑temperature exposures on Halyomorpha halys (Hemiptera: Pentatomidae) adults before and after overwintering. Scientific Reports, 10, 1-9. https://doi.org/10.1038/s41598-020-72120-5
  • Selaledi, L. & Mabelebele, M. (2021). The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.). Insects, 12(4), 2-12 https://doi.org/10.3390/insects12040333
  • Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K.A., Polak-Juszczak, L., Jarocki, A. & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287-291. https://doi.org/10.4236/as.2013.46041
  • Sinclair, B.J. & Marshall, K.E. (2018). The many roles of fats in overwintering insects. Journal of Experimental Biology, 7(221), 1-9. https://doi.org/10.1242/jeb.161836.
  • Sogari, G., Amato, M., Biasato, I., Chiesa, S. & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals, 9(4), 2-15. https://doi.org/10.3390/ani9040119
  • Stanley-Samuelson, D.W., Jurenka, R.A., Cripps, C., Blomquist, G.J. & Renobales, M. (1988). Fatty acids in insects: composition, metabolism, and biological significance. Archive of Insect Biochemistry and Physiology, 9(1), 1–33. https://doi.org/10.1002/arch.940090102
  • Tiencheu, B., Womeni, H.M., Linder, M., Mbiapo, F.T., Villeneuve, P., Fanni, J. & Parmentier, M. (2013). Changes of lipids in insect (Rhynchophorus phoenicis) during cooking and storage. Europan Journal of Lipid Science and Technology, 115(2), 186–195. https://doi.org/10.1002/ejlt.201200284
  • Van Broekhoven, S., Oonincx, D.G., Van Huis, A. & Van Loon, J.J. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73,1–10. https://doi.org/10.1016/j.jinsphys.2014.12.005
  • Zou, Z., Liu, X., Wang, J. & Zhang, G. (2010). Effects of low temperatures on the fatty acid composition of Hepialus jianchuanensis larvae. In: 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010), 16-18 October 2010, Yantai, China. https://doi.org/10.1109/BMEI.2010.5639714

The Effect of Different Cold Storage Period on Total Lipid Amount of Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae

Year 2021, Volume: 6 Issue: 3, 449 - 455, 28.09.2021
https://doi.org/10.35229/jaes.970307

Abstract

The ever-increasing world population indicates that it is inevitable to consider insects such as Tenebrio molitor, which are used as live food and even human food in some countries, as an alternative food source. Especially T. molitor larvae are a source of food with high nutritive value for including high lipid and protein. The main material of this study was T. molitor cultures. Flour:wheat flour (250 g: 250 g) in a ratio of 1:1 was used as food. 25 g wheat germ and 5 g dry yeast was put in it. Larvae at stages 13-15th were grouped as control and trial groups and kept for 5, 10, 15 and 20 days at specified temperatures. This study seeks answer to the question “will the insect continue to keep its lipid sources during the periods in which it is kept in the cold, or will it continue to use its energy sources since the physiological adaptations it develops are not enough?” This study evaluates the total lipid amount and percentages of T. molitor larvae stored in refrigerator for different periods. Total lipid amount and percentages of the larvae stored in the cold for 5, 10 and 15 days were found to be higher when compared with the control group. A tendency to decrease was observed in larvae kept for 20 days. As a result, it is recommended for producers not to keep in the refrigerator for more than 15 days. Otherwise, it should be considered that there may be a decrease in important energy and food sources.

References

  • Adámková, A., Adámek, M., Mlček, J., Borkovcová, M., Bednářová, M., Kouřimská, L., Skácel, J. & Vítová, E. (2017). Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 460-465. https://doi.org/10.5219/779
  • Adámková, A., Mlček, J., Adámek, M., Borkovcová, M., Bednářová, M., Hlobilová, V., Knížková, I. & Juríková, T. (2020). Tenebrio molitor (Coleoptera:Tenebrionidae)- optimization of rearing conditions to obtain desired nutritional values. Journal of Insect Science, 20, 1–10. https://doi.org/10.1093/jisesa/ieaa100
  • Aguila, J.R., Suszko, J., Gibbs, A.G. & Hoshizaki, D.K. (2007). The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimantal Biology, 210(6), 956-963. https://doi.org/10.1242/jeb.001586
  • Aman, P., Frederich, M., Megido, R.C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G. & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337–340. https://doi.org/10.1016/j.aspen.2017.02.001
  • Arrese, E.L. & Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, 55, 207–225. https://doi.org/10.1146/annurev-ento-112408-085356
  • Azeez, O.I., Meintjes, R. & Chamunorwa, J.P. (2014). Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus. Lipids in Health and Disease, 13(71), 2-13. https://doi.org/10.1186/1476-511X-13-71
  • Belluco, S., Losass C., Maggioletti, M., Alonzi, C.C., Paoletti, M.G. & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296-313. https://doi.org/10.1111/1541-4337.12014
  • Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N.M., Murta, D., Nunes, R. & Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS Journal, 21, 57–64. https://doi.org/10.1016/j.nfs.2020.10.001
  • Danthine, S., Blecker, C., Paul, A., Frederich, M., Taofic, A., Lognay, G., Fauconier, M.L. & Francis, F. (2013). Physicochemical properties of lipids extracted from Tenebrio molitor larvae. Food Science and Formulations, IFCON. December 2013, India.
  • Dooremalen, C. & Ellers, J. (2010). A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod. Journal of Insect Physiology, 56(2), 178-84. https://doi.org/10.1016/j.jinsphys.2009.10.002
  • Dreassi, E., Cito, A., Zanfini, A., Materozzi, L., Botta, M. & Francardi, V. (2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52(3), 285–294. https://doi.org/10.1007/s11745-016-4220-3
  • Duman, J.G., Wu, D.W., Xu, L., Tursman, D. & Olsen, T.M. (1991). Adaptations of insects to subzero temperature. The Quarterly Review of Biology, 66, 387-410.
  • Errico, S,, Dimatteo, S., Moliterni, S. & Baldacchino, F. (2021). Effects of long-lasting cold storage on Tenebrio molitor larvae (Coleoptera: Tenebrionidae). Journal of Insects as Food and Feed, 3, 1-6. https://doi.org/10.3920/JIFF2020.0162 Finkel, A.J. (1948). The lipid composition of Tenebrio molitor larvae. Physiological Zoology, 21(2), 111-133.
  • Folch, J., Lees, M. & Stanley, S.G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. https://doi.org/10.1016/s0021-9258(18)64849-5
  • Graham, A.L., Walker, V.K. & Davies, P.L. (2000). Developmental and environmental regulation of antifreese proteins in the mealworm beetle Tenebrio molitor. Europan Journal of Biochemistry, 267(21), 6452-6458. https://doi.org/10.1046/j.1432-1327.2000.01734.x
  • Halloran, A., Muenke, C., Vantomme, P. & Van Huis, A. (2014). Insects in the human food chain: global status and opportunities. Food Chain, 4(2), 103-118. https://doi.org/10.3362/2046-1887.2014.011
  • Helgadóttir, F., Toft, S. & Sigsgaard, L. (2017). Negative effects of low developmental temperatures on Aphid predation by Orius majusculus (Heteroptera: Anthocoridae). Biological Control, 114, 59–64. https://doi.org/10.1016/j.biocontrol.2017.08.002
  • Irwin, J.T. & Lee, R.E.Jr. (2003). Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos, 100(1), 71-78. https://doi.org/10.1034/j.1600-0706.2003.11738.x
  • Jajić, I., Popović, A., Urošević, M.I., Krstović, S., Petrović, M., Guljaš, D. & Samardžić, M. (2020). Fatty and amino acid profile of mealworm larvae (Tenebrio molitor l.) Biotechnology in Animal Husbandry, 36(2), 167-180. https://doi.org/10.2298/BAH2002167J
  • Jajić, I., Popović, A., Urošević, M.I., Krstović, S., Petrović, M. & Guljaš, D. (2019). Chemical composition of mealworm larvae (Tenebrio molitor) reared in Serbia. Contemporary Agriculture, 68(1-2), 23-27. https://doi.org/10.2478/contagri-2019-0005
  • Jones, L.D., Cooper, R.W. & Harding, R.S. (1972). Composition of mealworm Tenebrio molitor larvae. The Journal of Zoo Animal Medicine, 3(4), 34-41.
  • Kelemu, S., Niassy, S., Torto, B., Fiaboe, K., Affognon, H., Tonnang, H., Maniania N.K. & Ekesi, S. (2015). African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. Journal of Insects as Food and Feed 1(2), 103-119. https://doi.org/10.3920/JIFF2014.0016
  • Kröncke, N., Grebenteuch, S., Keil, C., Demtröder, S., Kroh, L., Thünemann, A.F., Benning, R. & Haase, H. (2019). Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects, 10(4), 2-13. https://doi.org/10.3390/insects10040084
  • Lee, E.R., Costanzo, J.P. & Mugnano, A. (1996). Regulation of suercooling and ice nucleation in insects. Eurepan Journal of Entomology, 93(3), 405-418.
  • Liu, Y., Liu, H., Liu, S., Wang, S., Jiang, R. & Li, S. (2009). Hormonal and nutritional regulation of insect fat body development and function. Archives of Insect Biochemistry and Physiology, 71(1), 16–30. https://doi.org/10.1002/arch.20290
  • Liu, C., Masri, J., Perez, V., Maya, C. & Zhao, J. (2020). Growth performance and nutrient composition of mealworms (Tenebrio Molitor) fed on fresh plant materials-supplemented diets. Foods, 9(2), 151. https://doi.org/10.3390/foods9020151
  • Marshall, K.E. & Sinclair, B.J. (2012). Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften 99, 33-41.
  • Melis, R., Braca, A., Mulas, G., Sanna, R., Spadaa, S., Serrab, G., Faddab, M.L., Roggioa, T., Uzzaua, S. & Aneddaa, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science and Emerging Technologies, 48, 138–149. https://doi.org/10.1016/j.ifset.2018.06.003
  • Mirzaeva, D.A., Khujamshukurov, N.A., Zokirov, B., Soxibov, B.O. & Kuchkarova, DKh. (2020). Influence of temperature and humidity on the development of Tenebrio molitor L. International Journal of Current Microbiology and Applied Sciences, 9(4), 3544-3559. https://doi.org/10.20546/ijcmas.2020.905.422
  • Mlček, J., Adámková, A., Adámek, M., Borkovcová, M., Bednářová, M. & Knížková, I. (2019). Fat from Tenebrionidae bugs – sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journan of Food and Nutrition Sciences, 69(3), 247–254. https://doi.org/10.31883/pjfns/109666
  • Morales-Ramos, J.A., Rojas, M.G, Shelby, K.S. & Coudron, T.A. (2015). Nutritional value of pupae versus larvae of Tenebrio molitor (Coleoptera: Tenebrionidae) as food for rearing Podisus maculiventris (Heteroptera: Pentatomidae). Journal of Economical Entomology, 109(2), 564–571. https://doi.org/10.1093/jee/tov338
  • Ochieng-Odero, J.P.R. (1992). The effect of three constant temperatures on larval critical weight, latent feding period, larval maximal weight and fecundity of Cnephasia jactatana (Walker) (Lepidoptera: Tortricidae). Journal of Insect Physiology, 38(2), 127-130. https://doi.org/10.1016/0022-1910(92)90041-B
  • Patterson, J.L. & Duman J.G. (1978). The role of the thermal hysteresis factor in Tenebrio molitor larvae. Journal of Experimental Biology, 74(1), 37-45. https://doi.org/10.1242/jeb.74.1.37
  • Rathee, M. & Ram, P. (2018). Impact of cold storage on the performance of entomophagous insects: an overview. Phytoparasitica, 46(6), 4-32. https://doi.org/10.1007/s12600-018-0683-5
  • Ravzanaadii, N., Kim, S., Choi, W.H., Hong, S. & Kim, N.J. (2012). Nutritional value of mealworm, Tenebrio molitor as food source. International Journal of Industrial Entomology, 25(1), 93-98. https://doi.org/10.7852/ijie.2012.25.1.093
  • Pant, R. & Gupta K.W. (1979). The effect of exposure to low temperature on the metabolism of carbohydrates, lipids and protein in the larvae of Philosamia ricini. Journal of Bioscience, 1(4), 441–446.
  • Sasmita, H.I., Tu, W., Bong, L. & Neoh, K. (2019). Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Vectors, 12, 2-16 https://doi.org/10.1186/s13071-019-3830-z
  • Scaccini, D., Vanishvili, L., Tirello, P., Walton, V.M., Duso, C. & Pozzebon, A. (2019). Lethal and sub‑lethal effects of low‑temperature exposures on Halyomorpha halys (Hemiptera: Pentatomidae) adults before and after overwintering. Scientific Reports, 10, 1-9. https://doi.org/10.1038/s41598-020-72120-5
  • Selaledi, L. & Mabelebele, M. (2021). The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.). Insects, 12(4), 2-12 https://doi.org/10.3390/insects12040333
  • Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K.A., Polak-Juszczak, L., Jarocki, A. & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287-291. https://doi.org/10.4236/as.2013.46041
  • Sinclair, B.J. & Marshall, K.E. (2018). The many roles of fats in overwintering insects. Journal of Experimental Biology, 7(221), 1-9. https://doi.org/10.1242/jeb.161836.
  • Sogari, G., Amato, M., Biasato, I., Chiesa, S. & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals, 9(4), 2-15. https://doi.org/10.3390/ani9040119
  • Stanley-Samuelson, D.W., Jurenka, R.A., Cripps, C., Blomquist, G.J. & Renobales, M. (1988). Fatty acids in insects: composition, metabolism, and biological significance. Archive of Insect Biochemistry and Physiology, 9(1), 1–33. https://doi.org/10.1002/arch.940090102
  • Tiencheu, B., Womeni, H.M., Linder, M., Mbiapo, F.T., Villeneuve, P., Fanni, J. & Parmentier, M. (2013). Changes of lipids in insect (Rhynchophorus phoenicis) during cooking and storage. Europan Journal of Lipid Science and Technology, 115(2), 186–195. https://doi.org/10.1002/ejlt.201200284
  • Van Broekhoven, S., Oonincx, D.G., Van Huis, A. & Van Loon, J.J. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73,1–10. https://doi.org/10.1016/j.jinsphys.2014.12.005
  • Zou, Z., Liu, X., Wang, J. & Zhang, G. (2010). Effects of low temperatures on the fatty acid composition of Hepialus jianchuanensis larvae. In: 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010), 16-18 October 2010, Yantai, China. https://doi.org/10.1109/BMEI.2010.5639714
There are 46 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Evrim Sönmez 0000-0002-5412-5728

Publication Date September 28, 2021
Submission Date July 12, 2021
Acceptance Date September 19, 2021
Published in Issue Year 2021 Volume: 6 Issue: 3

Cite

APA Sönmez, E. (2021). The Effect of Different Cold Storage Period on Total Lipid Amount of Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae. Journal of Anatolian Environmental and Animal Sciences, 6(3), 449-455. https://doi.org/10.35229/jaes.970307


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS