Review
BibTex RIS Cite

Probiotics in Aquaculture

Year 2021, Volume: 6 Issue: 4, 604 - 613, 31.12.2021

Abstract

Demand for aquaculture has been increasing in Turkey like it is all around the world. The enhancement of the consumption of these products brings about increasing in bacterial, parasitic, viral and fungal diseases in aquatic organisms. The widespread use of broad-spectrum chemotherapeutics used against various diseases causes antibiotic resistance over time. Due to this resistance, alternative ways are sought in the treatment of microbial diseases and one of the most important of these is using of probiotics. Probiotics have various benefits such as improving growth performance, increasing feed use, strengthening immune response against pathogens, increasing resistance to diseases, improving water quality, and increasing stress tolerance capacity. The purpose of this study is to compile probiotics studied in aquaculture, their effects on aquatic organisms, and also to create a resource for those working in this sector.

References

  • Adnan M, Patel M, Hadi S. (2017). Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. Peer-reviewed Journal.
  • Adorian T.J, Jamali H, Farsani H.G, Darvishi P, Hasanpour S, Bagheri T, Roozbehfar R. (2018). Effects of Probiotic Bacteria Bacilluson Growth Performance, Digestive Enzyme Activity, and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch), Probiotics and Antimicrobial Proteins.
  • Ahire J.J, Mokashe N.U, Chaudhari B.L. (2018) Effect of Dietary Probiotic Lactobacillus helveticus on Growth Performance, Antioxidant Levels, and Absorption of Essential Trace Elements in Goldfish (Carassius auratus). Probiotics and Antimicrobial Proteins.
  • Ai Q, Xu H, Mai K, Xu W, Wang J, Zhang W. (2011). Effects of Dietary Supplementation of Bacillus subtilis and Fructooligosaccharide on Growth Performance, Survival, Non-Specific Immune Response and Disease Resistance of Juvenile Large Yellow Croaker, Larimichthys Crocea. Aquaculture, 317, 155-161.
  • Alak G, Atamanalp M. (2012). Su Ürünleri Yetiştiriciliğinde Probiyotik ve Prebiyotik Kullanımı. Yuzuncu Yıl University Journal of Agricultural Sciences, 22(1), 62-68.
  • Altıntaş L, Sevin S, Tutun H, Yarsan E. (2016). Su Ürünleri Yetiştiriciliğinde Probiotik ve Prebiyotik Kullanımı. Turkiye Klinikleri Veterinary Sciences- Pharmacology and Toxicology - Special Topics, 2(1), 29-37.
  • Balcazar J.L, Rojas-Luna T. (2007). Inhibitory Activity of Probiotic Bacillus subtilis UTM 126 Against Vibrio Species Confers Protection Against Vibriosis in Juvenile Shrimp (Litopenaeus vannamei). Current Microbiology, 55, 409-412.
  • Biller J,D. Takahashi L,S. (2018). Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. Annals of the Brazilian Academy of Sciences, 90(4), 3403, 3414.
  • Blaut M, Klaus S. (2012). Intestinal microbiota and obesity. Handbook of Experimental Pharmacology, 209, 251-273.
  • Bourouni, O. C., El Bour, M., Calo-Mata, P., & Barros-Velàzquez. (2012). J. Antimicrobial resistance and potential probiotic application of Enterococcus spp. in sea bass and sea bream aquaculture. Antibiotic Resistant Bacteria-A Continuous Challenge in the New Millennium, 513-530.
  • Boshra H, Li J. (2006). Recent Advances on the Complement System of Teleost Fish. Fish & Shellfish Immunology, 20, 239-262.
  • Bulut C, Kubilay A. (2010). Farklı İşletmelerdeki Gökkuşağı Alabalıklarının (Oncorhynchus mykiss) Lizozim Aktivitelerinin Karşılaştırılması. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14, 134-143.
  • Bunnoy A, Na-Nakorn U, Srisapoome P. (2019). Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish, Microorganisms, 7(12), 613.
  • Carnevali O, Zamponi M.C, Sulpizio R, Rollo A, Nardi M, Orpianesi C, Silvi S, Caggiano M, Polzonetti A.M, Cresci A. (2004). Administration of Probiotic Strain to Improve Sea Bream Wellness during Development. Aquaculture International, 12, 377-386.
  • Castex M, Lemaire P, Wabete N, Chim L. (2010). Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish & Shellfish Immunology, 28, 622-631.
  • Das A, Nakhro K, Chowdhury S, Kamilya D. (2013). Effects of potential probiotic Bacillus amyloliquefaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish and Shellfish Immunology, 35(5), 1547-53.
  • Dia J, Chub Z, Zhangb S, Huangb J, Dub H, Weia O. (2019). Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish and Shellfish Immunology, 93, 711-719.
  • Didinen BI, Metin S, Onuk EE, Takmaz H, Ersoy AT. (2014). Isolation and characterization of potential probiotic bacteria from Rainbow Trout Oncorhynchus mykiss, (Walbaum) rearing units against bacterial pathogens. The Israeli Journal of Aquaculture-Bamidgeh, 66, 1006-1014.
  • Didinen BI, Onuk EE, Metin S, Çaylı Ö. (2018). Identification and characterization of lactic acid bacteria isolated from rainbow trout, (Oncorhynchus mykiss, Walbaum 1792), with inhibitory activity against Vagococcus salmoninarum and Lactococcus garvieae. Aquaculture Nutrition, 24, 400-407.
  • Duan Y, Wang, Y, Dong H, Ding X, Liu Q, Li H, Zhang J, Xiong D. (2018). Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation. Frontiers in microbiology, 9, 2191.
  • Eissa, N, El-Gheit E. A, Shaheen A. A. (2014). Protective effect of Pseudomonas fluorescens as a probiotic in controlling fish pathogens. American Journal of BioScience, 2(5), 175-181.
  • El-Jeni R, El Bour M, Calo-Mata P, Böhme K, Fernández-No IC, Barros-Velázquez J, Bouhaouala-Zahar B. (2016). In-vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Canadian Journal of Microbiology, 62(1), 60-71.
  • Feliatra F, Muchlisin Z.A, Teruna H.Y, Utamy W.R, Nursyirwani N, Dahliaty A. (2018). Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish [version 1; referees: 2 approved, 1 approved with reservations, 1 not approved]. F1000Research.
  • Felix K, Kuebutornye A, Abarike E.D, Lu Y, Hlordzi V, Sakyi M.E, Afriyie G, Wang Z, Li Y, Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry.
  • Giri S.S, Sen S.S, Sukumaran V. (2012). Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish & Shellfish Immunology, 32, 1135-1140.
  • Food and Agriculture Organization of the United Nations (FAO). (2006). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Roma.
  • Hemaiswarya S, Raja R, Ravikumar R, Carvalho I.S. (2013). Mechanism of Action of Probiotics. Brazilian Archives of Biology and Technology, 113-119.
  • Hosseini S.V, Arlindo S, Böhme K, Fernandez-No C, Calo-Mata P, Barros-Velazquez J. (2009). Molecular and probiotic characterization of bacteriocinproducing Enterococcus faecium strains isolated from nonfermented animal foods. Journal of Applied Microbiology, 1392–1403.
  • Ige B.A. (2013). Probiotics Use in Intensive Fish Farming. African Journal of Microbiology Research, 7(22), 2701-2711.
  • Kazuń B, Małaczewska J, Kazuń K, Żylińska-Urban J, Siwicki A.K. (2018). Immune-enhancing activity of potential probiotic strains of Lactobacillus plantarum in the common carp (Cyprinus carpio) fingerling. Journal of Veterinary, 62(4), 485-492.
  • Kuebutornye F.K.A, Abarike E.D, Lu Y, Hlordzi V, Sakyi M.E, Afriyie G, Wang Z, Li Y, Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry, 46, 819-841.
  • Kewcharoen W, Srisapoome P. (2019). Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains) Werasan Kewcharoen, Fish and Shellfish Immunology, 94, 175–189.
  • Lin Y.S, Saputra F, Chen Y.C, Hu S.Y. (2019). Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio), Fish & Shellfish Immunology, 86, 410–419.
  • Liu C.H, Chiu C.H, Wang S.W, Cheng W. (2012). Dietary Administration of the Probiotic, Bacillus subtilis E20, Enhances the Growth, İnnate İmmune Responses, and Disease Resistance of the Grouper, Epinephelus coioides. Fish & Shellfish Immunology, 33, 699-706.
  • Lopez L.M, Soto J.O, Escamilla I.T, Ibarra M.F, Ochoa L, Drawbridge M, Peres H. (2014). Evaluation of carbohydrate-to-lipid ratio in diets supplemented with Bacillus subtilis probiotic strain on growth performance, body composition and digestibility in juvenile white seabass (Atractoscion nobilis, Ayres 1860). Aquaculture Research, 1-10.
  • Mohammadian T, Nasirpour M, Tabandeh M.R, Heidary A.A, Ghanei-Motlagh R, Hosseini S.S. (2019). Administrations of Autochthonous Probiotics Altered Juvenile Rainbow Trout Oncorhynchus mykiss Health Status, Growth Performance and Resistance to Lactococcus garvieae, an Experimental Infection. Fish Shellfish Immunology, 86, 269–279.
  • Neissi A, Rafiee G, Nematollahi M, Safari O. (2013). The effect of Pediococcus acidilactici bacteria used as probiotic supplement on the growth and non-specific immune responses of green terror, Aequidens rivulatus. Fish & Shellfish Immunology, 35, 1976-1980.
  • Ninawe A.S, Senvin J. (2009). Probiotics in shrimp aquaculture: Avenues and challenges, Critical Reviews in Microbiology, 35(1), 43–66.
  • Oliver W.T, Wells J.E. (2015). Lysozyme as an alternative to growth promoting antibiotics in swine production. Journal of Animal Science and Biotechnology, 6, 35.
  • Pan X, Wu T, Zhang L, Song Z, Tang H, Zhao Z. (2008). In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish X. Pan. Journal of Applied Microbiology, 105, 1623–1629.
  • Panzuto F, D’Amato A, Laghi A, Cadau G, D’Ambra G, Aguzzi D. (2003). Abdominal tuberculosis with pancreatic involvement: a case report. Digestive and Liver Disease, 35(4), 283-7.
  • Pehlivan D, Onuk EE. (2020). Gökkuşağı Alabalığı Bağırsaklarından İzole Edilen Laktik Asit Bakterilerinin Lactococcus garvieae’ye Karşı Probiyotik Potansiyelinin İn Vitro Olarak Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 5(4), 647-654.
  • Pérez-Ramos A, Mohedano M.L, Pardo M.A, López P. (2018). b-Glucan-Producing Pediococcus parvulus 2.6: Test of Probiotic and Immunomodulatory Properties in Zebrafish Models. Frontiers in Microbiology, 9.
  • Pradeep B, Ayyapan S, Pandey P.K. (2003). Effect of Probiotics and Antibiotics on Water Quality and Bacterial Flora, Journal of the Inland Fisheries Society of India,35(2), 68-72.
  • Ramesh D, Vinothkanna A, Rai A.K,Vignesh V.S. (2015). Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish & Shellfish Immunology, 45, 268-276.
  • Poolsawat, L., Li, X., He, M., Ji, D., & Leng, X. (2020). Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus× O. aureus). Aquaculture Nutrition, 26(3), 657-670.
  • Román L, Real F, Sorroza L, Padilla D, Acosta B, Grasso V, Bravo J, Acosta F. (2012). The in vitro effect of probiotic Vagococcus fluvialis on the innate immune parameters of Sparus aurata and Dicentrarchus labrax. Fish & Shellfish Immunology, 33, 1071-1075.
  • Makled S.O, Hamdan A.M, El-Sayed A.F.M, Hafez E.E. (2017). Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish and Shellfish Immunology.
  • Servin A, Coconnier M. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Practice & Research: Clinical Gastroenterology, 17(5), 741-54.
  • Soltani M, Pakzad K, Taheri-Mirghaed A, Mirzargar S, Shekarabi S.P.H, Yosefi P, Soleymani N. (2019). Dietary Application of the Probiotic Lactobacillus plantarum 426951 Enhances Immune Status and Growth of Rainbow Trout (Oncorhynchus mykiss) Vaccinated Against Yersinia ruckeri. Probiotics and Antimicrobial Proteins, 11(1), 207-219.
  • Sorroza L, Padilla D, Acosta F, Román L, Grasso V, Vega J, Real F. (2012). Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Veterinary Microbiology, 155, 369-73.
  • Sun, Y. Z., YANG, H. L., Ma, R. L., ZHANG, C. X., & Lin, W. Y. (2011). Effect of dietary administration of Psychrobacter sp. on the growth, feed utilization, digestive enzymes and immune responses of grouper Epinephelus coioides. Aquaculture Nutrition, 17(3), 733-740.
  • Tang M. (2009). Immune Effects of Probiotic Bacteria. Handbook of Probiotics and Prebiotics (2), Yuan Kun Lee, Seppo Salminen. Tarnecki A.M, Wafapoor M, Phillips R.N, Rhody N.R. (2019). Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Scientific Reports.
  • Thy H.T.T, Tri N.N, Quy O.M, Kannika K, Unajak S, Areechon N. (2016). Effects of the Dietary Supplementation of Mixed Probiotic Spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on Growth, Innate Immunity and Stress Responses of Striped Catfish (Pangasianodon hypophthalmus). Fish and Shellfish Immunology.
  • Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen R.E, Ringo E, Bindelle J, Zhou Z. (2019). Use of probiotics in aquaculture of China-a review of the past decade. Fish Shellfish Immunology, 86, 734-755.
  • Wang Y.B, Xu Z.R, Xia M.S. (2005). The Effectiveness of Commercial Probiotics in Northern White Shrimp (Penaeus vannamei L.) Ponds. Fisheries Science, 71, 1036–1041.
  • Xiaolong G, Caihuan K, Mo Z, Xian L, Fucun W, Ying L. (2019). Effects of the probiotic Bacillus amyloliquefaciens on the growth, immunity, and disease resistance of Haliotis discus hannai. Fish and Shellfish Immunology, 94, 617-126.
  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. (2000). Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655-671.
  • Yamashita M.M, Ferrarezi J.V, Pereira G.V, Bandeira G, Silva B.C, Pereira S.A, Martins M.L, Mouriño J.L.P. (2020). Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139.
  • Yeşilova Y, Sula B, Yavuz E,Uçmak D. (2010). Probiyotikler. Kartal Eğitim ve Araştırma Hastanesi Tıp Dergisi, 49-56.
  • Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G. (2018). Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish and Shellfish Immunology, 78, 322-330.
  • Yia C.C, Liu C.H, Chuang K.P, Changa Y.T, Hua S.H. (2019). A potential probiotic Chromobacterium aquaticum with bacteriocin-like activity enhances the expression of indicator genes associated with nutrient metabolism, growth performance and innate immunity against pathogen infections in zebrafish (Danio rerio). Fish and Shellfish Immunology, 93, 124-134.
  • Zaineldin A.I, Hegazi S, Koshio S, Ishikawa M, Bakr A, El-Keredy A.M.S, Dawood M.O.A, Dossou S, Wang W, Yukun Z. (2018). Bacillus subtilis as probiotic candidate for red sea bream: Growth performance, oxidative status, and immune response traits. Fish and Shellfish Immunology.
  • Zhang, W., Liu, M., & Dai, X. (2013). Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Brazilian journal of microbiology, 44(3), 685-691.
  • Zhang H, Wang H, Hu K, Jiao L, Zhao M, Yang X, Xia L. (2019). Effect of Dietary Supplementation of Lactobacillus Casei YYL3 and L. Plantarum YYL5 on Growth, Immune Response and Intestinal Microbiota in Channel Catfish. Animals, 9(12).
  • Zhao Y, Yuan L, Junli W, Sun Z. (2015). Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology.
  • Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z. (2012). Effects of Potential Probiotic Bacillus subtilis T13 on Growth, İmmunity and Disease Resistance Against Vibrio splendidus Infection in Juvenile Sea Cucumber Apostichopus japonicus. Fish & Shellfish Immunology, 32, 750-755.

Akuakültürde Probiyotikler

Year 2021, Volume: 6 Issue: 4, 604 - 613, 31.12.2021

Abstract

Ülkemizde ve dünya genelinde su ürünlerine karşı talep gittikçe artmaktadır. Su ürünlerin tüketiminin artması sucul canlılarda bakteriyel, paraziter, viral ve fungal hastalıkların artışını da beraberinde getirmektedir. Akuakültürde hastalıklara karşı kullanılan geniş spektrumlu antibiyotiklerin yaygın kullanımı zamanla antibiyotik direncine neden olmaktadır. Bu direnç nedeniyle mikrobiyal hastalıkların tedavisinde alternatif yollar aranmaktadır ve bunların en önemlilerinden biri probiyotiklerdir. Probiyotiklerin büyüme performansını geliştirme, yem kullanımını arttırma, patojenlere karşı immun yanıtı güçlendirme, hastalıklara karşı direnci arttırma, su kalitesini iyileştirme ve stres tolerans kapasitesini artırma gibi çeşitli faydaları vardır. Bu makalenin amacı akuakültürde çalışılmış probiyotikleri ve onların etkilerini derlemek ve ayrıca bu sektörde çalışanlar için kaynak oluşturmaktır.

References

  • Adnan M, Patel M, Hadi S. (2017). Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. Peer-reviewed Journal.
  • Adorian T.J, Jamali H, Farsani H.G, Darvishi P, Hasanpour S, Bagheri T, Roozbehfar R. (2018). Effects of Probiotic Bacteria Bacilluson Growth Performance, Digestive Enzyme Activity, and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch), Probiotics and Antimicrobial Proteins.
  • Ahire J.J, Mokashe N.U, Chaudhari B.L. (2018) Effect of Dietary Probiotic Lactobacillus helveticus on Growth Performance, Antioxidant Levels, and Absorption of Essential Trace Elements in Goldfish (Carassius auratus). Probiotics and Antimicrobial Proteins.
  • Ai Q, Xu H, Mai K, Xu W, Wang J, Zhang W. (2011). Effects of Dietary Supplementation of Bacillus subtilis and Fructooligosaccharide on Growth Performance, Survival, Non-Specific Immune Response and Disease Resistance of Juvenile Large Yellow Croaker, Larimichthys Crocea. Aquaculture, 317, 155-161.
  • Alak G, Atamanalp M. (2012). Su Ürünleri Yetiştiriciliğinde Probiyotik ve Prebiyotik Kullanımı. Yuzuncu Yıl University Journal of Agricultural Sciences, 22(1), 62-68.
  • Altıntaş L, Sevin S, Tutun H, Yarsan E. (2016). Su Ürünleri Yetiştiriciliğinde Probiotik ve Prebiyotik Kullanımı. Turkiye Klinikleri Veterinary Sciences- Pharmacology and Toxicology - Special Topics, 2(1), 29-37.
  • Balcazar J.L, Rojas-Luna T. (2007). Inhibitory Activity of Probiotic Bacillus subtilis UTM 126 Against Vibrio Species Confers Protection Against Vibriosis in Juvenile Shrimp (Litopenaeus vannamei). Current Microbiology, 55, 409-412.
  • Biller J,D. Takahashi L,S. (2018). Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. Annals of the Brazilian Academy of Sciences, 90(4), 3403, 3414.
  • Blaut M, Klaus S. (2012). Intestinal microbiota and obesity. Handbook of Experimental Pharmacology, 209, 251-273.
  • Bourouni, O. C., El Bour, M., Calo-Mata, P., & Barros-Velàzquez. (2012). J. Antimicrobial resistance and potential probiotic application of Enterococcus spp. in sea bass and sea bream aquaculture. Antibiotic Resistant Bacteria-A Continuous Challenge in the New Millennium, 513-530.
  • Boshra H, Li J. (2006). Recent Advances on the Complement System of Teleost Fish. Fish & Shellfish Immunology, 20, 239-262.
  • Bulut C, Kubilay A. (2010). Farklı İşletmelerdeki Gökkuşağı Alabalıklarının (Oncorhynchus mykiss) Lizozim Aktivitelerinin Karşılaştırılması. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14, 134-143.
  • Bunnoy A, Na-Nakorn U, Srisapoome P. (2019). Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish, Microorganisms, 7(12), 613.
  • Carnevali O, Zamponi M.C, Sulpizio R, Rollo A, Nardi M, Orpianesi C, Silvi S, Caggiano M, Polzonetti A.M, Cresci A. (2004). Administration of Probiotic Strain to Improve Sea Bream Wellness during Development. Aquaculture International, 12, 377-386.
  • Castex M, Lemaire P, Wabete N, Chim L. (2010). Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish & Shellfish Immunology, 28, 622-631.
  • Das A, Nakhro K, Chowdhury S, Kamilya D. (2013). Effects of potential probiotic Bacillus amyloliquefaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish and Shellfish Immunology, 35(5), 1547-53.
  • Dia J, Chub Z, Zhangb S, Huangb J, Dub H, Weia O. (2019). Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish and Shellfish Immunology, 93, 711-719.
  • Didinen BI, Metin S, Onuk EE, Takmaz H, Ersoy AT. (2014). Isolation and characterization of potential probiotic bacteria from Rainbow Trout Oncorhynchus mykiss, (Walbaum) rearing units against bacterial pathogens. The Israeli Journal of Aquaculture-Bamidgeh, 66, 1006-1014.
  • Didinen BI, Onuk EE, Metin S, Çaylı Ö. (2018). Identification and characterization of lactic acid bacteria isolated from rainbow trout, (Oncorhynchus mykiss, Walbaum 1792), with inhibitory activity against Vagococcus salmoninarum and Lactococcus garvieae. Aquaculture Nutrition, 24, 400-407.
  • Duan Y, Wang, Y, Dong H, Ding X, Liu Q, Li H, Zhang J, Xiong D. (2018). Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation. Frontiers in microbiology, 9, 2191.
  • Eissa, N, El-Gheit E. A, Shaheen A. A. (2014). Protective effect of Pseudomonas fluorescens as a probiotic in controlling fish pathogens. American Journal of BioScience, 2(5), 175-181.
  • El-Jeni R, El Bour M, Calo-Mata P, Böhme K, Fernández-No IC, Barros-Velázquez J, Bouhaouala-Zahar B. (2016). In-vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Canadian Journal of Microbiology, 62(1), 60-71.
  • Feliatra F, Muchlisin Z.A, Teruna H.Y, Utamy W.R, Nursyirwani N, Dahliaty A. (2018). Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish [version 1; referees: 2 approved, 1 approved with reservations, 1 not approved]. F1000Research.
  • Felix K, Kuebutornye A, Abarike E.D, Lu Y, Hlordzi V, Sakyi M.E, Afriyie G, Wang Z, Li Y, Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry.
  • Giri S.S, Sen S.S, Sukumaran V. (2012). Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish & Shellfish Immunology, 32, 1135-1140.
  • Food and Agriculture Organization of the United Nations (FAO). (2006). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Roma.
  • Hemaiswarya S, Raja R, Ravikumar R, Carvalho I.S. (2013). Mechanism of Action of Probiotics. Brazilian Archives of Biology and Technology, 113-119.
  • Hosseini S.V, Arlindo S, Böhme K, Fernandez-No C, Calo-Mata P, Barros-Velazquez J. (2009). Molecular and probiotic characterization of bacteriocinproducing Enterococcus faecium strains isolated from nonfermented animal foods. Journal of Applied Microbiology, 1392–1403.
  • Ige B.A. (2013). Probiotics Use in Intensive Fish Farming. African Journal of Microbiology Research, 7(22), 2701-2711.
  • Kazuń B, Małaczewska J, Kazuń K, Żylińska-Urban J, Siwicki A.K. (2018). Immune-enhancing activity of potential probiotic strains of Lactobacillus plantarum in the common carp (Cyprinus carpio) fingerling. Journal of Veterinary, 62(4), 485-492.
  • Kuebutornye F.K.A, Abarike E.D, Lu Y, Hlordzi V, Sakyi M.E, Afriyie G, Wang Z, Li Y, Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry, 46, 819-841.
  • Kewcharoen W, Srisapoome P. (2019). Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains) Werasan Kewcharoen, Fish and Shellfish Immunology, 94, 175–189.
  • Lin Y.S, Saputra F, Chen Y.C, Hu S.Y. (2019). Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio), Fish & Shellfish Immunology, 86, 410–419.
  • Liu C.H, Chiu C.H, Wang S.W, Cheng W. (2012). Dietary Administration of the Probiotic, Bacillus subtilis E20, Enhances the Growth, İnnate İmmune Responses, and Disease Resistance of the Grouper, Epinephelus coioides. Fish & Shellfish Immunology, 33, 699-706.
  • Lopez L.M, Soto J.O, Escamilla I.T, Ibarra M.F, Ochoa L, Drawbridge M, Peres H. (2014). Evaluation of carbohydrate-to-lipid ratio in diets supplemented with Bacillus subtilis probiotic strain on growth performance, body composition and digestibility in juvenile white seabass (Atractoscion nobilis, Ayres 1860). Aquaculture Research, 1-10.
  • Mohammadian T, Nasirpour M, Tabandeh M.R, Heidary A.A, Ghanei-Motlagh R, Hosseini S.S. (2019). Administrations of Autochthonous Probiotics Altered Juvenile Rainbow Trout Oncorhynchus mykiss Health Status, Growth Performance and Resistance to Lactococcus garvieae, an Experimental Infection. Fish Shellfish Immunology, 86, 269–279.
  • Neissi A, Rafiee G, Nematollahi M, Safari O. (2013). The effect of Pediococcus acidilactici bacteria used as probiotic supplement on the growth and non-specific immune responses of green terror, Aequidens rivulatus. Fish & Shellfish Immunology, 35, 1976-1980.
  • Ninawe A.S, Senvin J. (2009). Probiotics in shrimp aquaculture: Avenues and challenges, Critical Reviews in Microbiology, 35(1), 43–66.
  • Oliver W.T, Wells J.E. (2015). Lysozyme as an alternative to growth promoting antibiotics in swine production. Journal of Animal Science and Biotechnology, 6, 35.
  • Pan X, Wu T, Zhang L, Song Z, Tang H, Zhao Z. (2008). In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish X. Pan. Journal of Applied Microbiology, 105, 1623–1629.
  • Panzuto F, D’Amato A, Laghi A, Cadau G, D’Ambra G, Aguzzi D. (2003). Abdominal tuberculosis with pancreatic involvement: a case report. Digestive and Liver Disease, 35(4), 283-7.
  • Pehlivan D, Onuk EE. (2020). Gökkuşağı Alabalığı Bağırsaklarından İzole Edilen Laktik Asit Bakterilerinin Lactococcus garvieae’ye Karşı Probiyotik Potansiyelinin İn Vitro Olarak Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 5(4), 647-654.
  • Pérez-Ramos A, Mohedano M.L, Pardo M.A, López P. (2018). b-Glucan-Producing Pediococcus parvulus 2.6: Test of Probiotic and Immunomodulatory Properties in Zebrafish Models. Frontiers in Microbiology, 9.
  • Pradeep B, Ayyapan S, Pandey P.K. (2003). Effect of Probiotics and Antibiotics on Water Quality and Bacterial Flora, Journal of the Inland Fisheries Society of India,35(2), 68-72.
  • Ramesh D, Vinothkanna A, Rai A.K,Vignesh V.S. (2015). Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish & Shellfish Immunology, 45, 268-276.
  • Poolsawat, L., Li, X., He, M., Ji, D., & Leng, X. (2020). Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus× O. aureus). Aquaculture Nutrition, 26(3), 657-670.
  • Román L, Real F, Sorroza L, Padilla D, Acosta B, Grasso V, Bravo J, Acosta F. (2012). The in vitro effect of probiotic Vagococcus fluvialis on the innate immune parameters of Sparus aurata and Dicentrarchus labrax. Fish & Shellfish Immunology, 33, 1071-1075.
  • Makled S.O, Hamdan A.M, El-Sayed A.F.M, Hafez E.E. (2017). Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish and Shellfish Immunology.
  • Servin A, Coconnier M. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Practice & Research: Clinical Gastroenterology, 17(5), 741-54.
  • Soltani M, Pakzad K, Taheri-Mirghaed A, Mirzargar S, Shekarabi S.P.H, Yosefi P, Soleymani N. (2019). Dietary Application of the Probiotic Lactobacillus plantarum 426951 Enhances Immune Status and Growth of Rainbow Trout (Oncorhynchus mykiss) Vaccinated Against Yersinia ruckeri. Probiotics and Antimicrobial Proteins, 11(1), 207-219.
  • Sorroza L, Padilla D, Acosta F, Román L, Grasso V, Vega J, Real F. (2012). Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Veterinary Microbiology, 155, 369-73.
  • Sun, Y. Z., YANG, H. L., Ma, R. L., ZHANG, C. X., & Lin, W. Y. (2011). Effect of dietary administration of Psychrobacter sp. on the growth, feed utilization, digestive enzymes and immune responses of grouper Epinephelus coioides. Aquaculture Nutrition, 17(3), 733-740.
  • Tang M. (2009). Immune Effects of Probiotic Bacteria. Handbook of Probiotics and Prebiotics (2), Yuan Kun Lee, Seppo Salminen. Tarnecki A.M, Wafapoor M, Phillips R.N, Rhody N.R. (2019). Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Scientific Reports.
  • Thy H.T.T, Tri N.N, Quy O.M, Kannika K, Unajak S, Areechon N. (2016). Effects of the Dietary Supplementation of Mixed Probiotic Spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on Growth, Innate Immunity and Stress Responses of Striped Catfish (Pangasianodon hypophthalmus). Fish and Shellfish Immunology.
  • Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen R.E, Ringo E, Bindelle J, Zhou Z. (2019). Use of probiotics in aquaculture of China-a review of the past decade. Fish Shellfish Immunology, 86, 734-755.
  • Wang Y.B, Xu Z.R, Xia M.S. (2005). The Effectiveness of Commercial Probiotics in Northern White Shrimp (Penaeus vannamei L.) Ponds. Fisheries Science, 71, 1036–1041.
  • Xiaolong G, Caihuan K, Mo Z, Xian L, Fucun W, Ying L. (2019). Effects of the probiotic Bacillus amyloliquefaciens on the growth, immunity, and disease resistance of Haliotis discus hannai. Fish and Shellfish Immunology, 94, 617-126.
  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. (2000). Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655-671.
  • Yamashita M.M, Ferrarezi J.V, Pereira G.V, Bandeira G, Silva B.C, Pereira S.A, Martins M.L, Mouriño J.L.P. (2020). Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139.
  • Yeşilova Y, Sula B, Yavuz E,Uçmak D. (2010). Probiyotikler. Kartal Eğitim ve Araştırma Hastanesi Tıp Dergisi, 49-56.
  • Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G. (2018). Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish and Shellfish Immunology, 78, 322-330.
  • Yia C.C, Liu C.H, Chuang K.P, Changa Y.T, Hua S.H. (2019). A potential probiotic Chromobacterium aquaticum with bacteriocin-like activity enhances the expression of indicator genes associated with nutrient metabolism, growth performance and innate immunity against pathogen infections in zebrafish (Danio rerio). Fish and Shellfish Immunology, 93, 124-134.
  • Zaineldin A.I, Hegazi S, Koshio S, Ishikawa M, Bakr A, El-Keredy A.M.S, Dawood M.O.A, Dossou S, Wang W, Yukun Z. (2018). Bacillus subtilis as probiotic candidate for red sea bream: Growth performance, oxidative status, and immune response traits. Fish and Shellfish Immunology.
  • Zhang, W., Liu, M., & Dai, X. (2013). Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Brazilian journal of microbiology, 44(3), 685-691.
  • Zhang H, Wang H, Hu K, Jiao L, Zhao M, Yang X, Xia L. (2019). Effect of Dietary Supplementation of Lactobacillus Casei YYL3 and L. Plantarum YYL5 on Growth, Immune Response and Intestinal Microbiota in Channel Catfish. Animals, 9(12).
  • Zhao Y, Yuan L, Junli W, Sun Z. (2015). Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology.
  • Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z. (2012). Effects of Potential Probiotic Bacillus subtilis T13 on Growth, İmmunity and Disease Resistance Against Vibrio splendidus Infection in Juvenile Sea Cucumber Apostichopus japonicus. Fish & Shellfish Immunology, 32, 750-755.
There are 67 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yağmur Yıldırım 0000-0002-4727-2164

Kadir Serdar Diker 0000-0003-2150-5553

Early Pub Date December 30, 2021
Publication Date December 31, 2021
Submission Date October 8, 2021
Acceptance Date November 16, 2021
Published in Issue Year 2021 Volume: 6 Issue: 4

Cite

APA Yıldırım, Y., & Diker, K. S. (2021). Akuakültürde Probiyotikler. Journal of Anatolian Environmental and Animal Sciences, 6(4), 604-613.


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS