Research Article
BibTex RIS Cite

Comparison of Human and Sheep Femur with Finite Element Method

Year 2021, Volume: 6 Issue: 4, 599 - 603, 31.12.2021
https://doi.org/10.35229/jaes.948214

Abstract

Analysis studies using the finite element method (FEM) in human and animal health research have gained importance with the development of computer technology. FEM analysis studies are performed on animals such as mice, dogs, rabbits, pigs, horses and sheep. Modeling studies of the bones found in these animals give more accurate results in large animals. The aim of this study is to create solid models of human and sheep femurs and compare the stress, strain and deformation values with the help of a package program using the finite element method. As a result of the analyzes, it was determined that the mechanical values in the sheep femur were lower than those in the human femur.

References

  • ANSYS 16.0, (2016). Swanson Analysis Systems Inc., Houston PA, USA.
  • Atik, F., Özkan, A. & Uygur İ. (2012). İnsan uyluk kemiği ve kalça protezinin gerilme ve deplasman davranışının kıyaslanması. Sakarya University Journal of Science , 16(3), 249-253.
  • Bergmann, G., Graichen, F. & Rohlmann, A. (1999). Hip joint forces in sheep. J Biomech., 32(8), 769-77. Doi: 10.1016/s0021-9290(99)00068-8.
  • Chappard, D., Aguado, E., Huré, G., Grizon, F. & Basle, M.F. (1999). The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int J Oral Maxillofac Implants, 14(2), 189-196.
  • Croker, S.L., Clement, J.G. & Donlon, D. (2009). A comparison of cortical bone thickness in the femoral midshaft of humans and two non-human mammals. Homo. 60(6), 551-65. Doi: 10.1016/j.jchb.2009.07.003.
  • Ding, M., Danielsen, C.C. & Overgaard, S. (2012). The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone. J Tissue Eng Regen Med., 6(6), 443-50. Doi: 10.1002/term.448. Epub 2011 Jul 13.
  • Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A. & Galbusera, F. (2014), Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon). 29(4), 363-72. Doi: 10.1016/j.clinbiomech.2014.01.006.
  • Jin, L., Sun, H., Dan, S., Li, S., Zhang, C., Zhang, C., Ren, X., Shan, D. & Ling, S. (2019). Serotonin regulates maternal calcium homeostasis during the perinatal period of sheep. J Anim Sci., 97(12), 5009-5015. Doi: 10.1093/jas/skz346.
  • Han, P.F., Zhang, R., Gao, Y.Y., Li, P., Wei, X.C. & Lv, Z. (2020). Mini Domuz ve Koyun Diz Eklemlerinin 3 Boyutlu Geometrik Modellerinin Sonlu Elemanlar Analizi Kullanılarak Oluşturulması ve Simülasyonu. Med Sci Monit. 26, Doi: 10.12659 / MSM.921540.
  • Hettwer, W., Horstmann, P.F., Bischoff, S., Güllmar, D., Reichenbach, J.R., Poh, P.S.P., van Griensven, M., Gras, F. & Diefenbeck, M. (2019). Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur. APMIS, 127(2), 53-63. Doi: 10.1111/apm.12918.
  • Komori, T. (2015). Animal models for osteoporosis. Eur J Pharmacol, 759, 287-294.
  • Lill, C.A., Hesseln, J., Schlegel, U., Eckhardt, C., Goldhahn, J. & Schneider, E. (2003). Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res, 21, 836- 842.
  • Lucchini, J.P., Aurelle, J.L., Therin, M., Donath, K. & Becker, W. (1996). A pilot study comparing screw-shaped implants. Surface analysis and histologic evaluation of bone healing. Clin Oral Implants Res., 7(4), 397-404. Doi: 10.1034/j.1600-0501.1996.070414.x.
  • Mayr, H.O., Suedkamp, N.P., Hammer, T., Hein, W., Hube, R., Roth, P.V. & Bernstein, A. (2015). β-Tricalcium phosphate for bone replacement: stability and integration in sheep. J Biomech., 48(6), 1023-1031. Doi: 10.1016/j.jbiomech.2015.01.040.
  • Mazoochian, F., Hölzer, A., Jalali, J., Schmidutz, F., Schröder, C., Woiczinski, M., Maierl, J., Augat, P. & Jansson, V. (2012). Finite element analysis of the ovine hip: development, results and comparison with the human hip. Vet Comp Orthop Traumatol. 25(4), 301-316. Doi: 10.3415/VCOT-11-09-0132.
  • Newman, E., Turner, A.S., & Wark, J.D. (1995). The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone, 16, 277-284. Doi: 10.1016/8756-3282(95)00026-a.
  • Oheim, R., Amling, M., Ignatius, A. & Pogoda, P. (2012). Large animal model for osteoporosis in humans: the ewe. Eur Cells Mater, 24, 372–385
  • Ohyama, T., Yasuda, H., Shibuya, N., Tadokoro, S., Nakabayashi, S., Namaki, S., Hara, Y., Ogawa, T. & Ishigami, T. (2017). Three-dimensional finite element analysis of the effects of implant diameter and photofunctionalization on peri-implant stress. J Oral Sci. 59(2), 273-278. Doi: 10.2334/josnusd.16-0144.
  • Shea, J.E., Hallows, R.K., Ricks, S. & Bloebaum, R.D. (2002). Microvascularization of the hypermineralized calcified fibrocartilage and cortical bone in the sheep proximal femur. Anat Rec., 268(4), 365-370. Doi: 10.1002/ar.10173.
  • Simpson, A.H. & Murray, I.R. (2016). Main differences in osteoporotic fracture models: which should I use? Injury, 47, 15-20.
  • Solidworks 2018, (2018). Dassault Systèmes Solidworks Corporation. Waltham MA, USA.
  • Tu, Y.K., Liu, Y.Ç., Yang, W.J., Chen, L.W., Hong, Y.Y., Chen, Y.C. & Lin, L.C. (2009). Temperature rise simulation during a kirschner pin drilling in bone. Bioinformatics and Biomedical Engineering, ICBBE 2009 3rd International Conference on. Beijing 2009, p. 1-4.
  • Turner, A.S. (2002). The sheep as a model for osteoporosis in humans. Vet J, 163, 232-239.
  • Vetter, A., Liu, Y., Witt, F., Manjubala, I., Sander, O., Epari, D.R., Fratzl, P., Duda, G.N. & Weinkamer, R. (2011). The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: A finite element study based on sheep experiments. Journal of Biomechanics, 44, 517–523.

İnsan ve Koyun Femur Kemiğinin Sonlu Elemanlar Yöntemiyle Karşılaştırılması

Year 2021, Volume: 6 Issue: 4, 599 - 603, 31.12.2021
https://doi.org/10.35229/jaes.948214

Abstract

İnsan ve hayvan sağlığı araştırmalarında sonlu elemanlar yöntemi (SEY) kullanılarak gerçekleştirilen analiz çalışmaları, bilgisayar teknolojisinin de gelişmesiyle birlikte önem kazanmıştır. SEY analiz çalışmaları fare, köpek, tavşan, domuz, at ve koyun gibi hayvanlarda yapılmaktadır. Bu hayvanlarda bulunan kemiklerin modelleme çalışmaları büyük hayvanlarda yapılması daha doğru sonuçlar vermektedir. Bu çalışmanın amacı, insan ve koyun femurununlarının katı modellemelerinin oluşturulup, sonlu elemanlar yöntemi kullanılarak bir paket program yardımıyla gerilme, şekil değiştirme ve deformasyon değerlerinin karşılaştırılmasıdır. Analizler sonucunda koyun femurundaki mekanik değerlerin insan femurundakilere kıyasla daha düşük olduğu tespit edilmiştir.

References

  • ANSYS 16.0, (2016). Swanson Analysis Systems Inc., Houston PA, USA.
  • Atik, F., Özkan, A. & Uygur İ. (2012). İnsan uyluk kemiği ve kalça protezinin gerilme ve deplasman davranışının kıyaslanması. Sakarya University Journal of Science , 16(3), 249-253.
  • Bergmann, G., Graichen, F. & Rohlmann, A. (1999). Hip joint forces in sheep. J Biomech., 32(8), 769-77. Doi: 10.1016/s0021-9290(99)00068-8.
  • Chappard, D., Aguado, E., Huré, G., Grizon, F. & Basle, M.F. (1999). The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int J Oral Maxillofac Implants, 14(2), 189-196.
  • Croker, S.L., Clement, J.G. & Donlon, D. (2009). A comparison of cortical bone thickness in the femoral midshaft of humans and two non-human mammals. Homo. 60(6), 551-65. Doi: 10.1016/j.jchb.2009.07.003.
  • Ding, M., Danielsen, C.C. & Overgaard, S. (2012). The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone. J Tissue Eng Regen Med., 6(6), 443-50. Doi: 10.1002/term.448. Epub 2011 Jul 13.
  • Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A. & Galbusera, F. (2014), Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon). 29(4), 363-72. Doi: 10.1016/j.clinbiomech.2014.01.006.
  • Jin, L., Sun, H., Dan, S., Li, S., Zhang, C., Zhang, C., Ren, X., Shan, D. & Ling, S. (2019). Serotonin regulates maternal calcium homeostasis during the perinatal period of sheep. J Anim Sci., 97(12), 5009-5015. Doi: 10.1093/jas/skz346.
  • Han, P.F., Zhang, R., Gao, Y.Y., Li, P., Wei, X.C. & Lv, Z. (2020). Mini Domuz ve Koyun Diz Eklemlerinin 3 Boyutlu Geometrik Modellerinin Sonlu Elemanlar Analizi Kullanılarak Oluşturulması ve Simülasyonu. Med Sci Monit. 26, Doi: 10.12659 / MSM.921540.
  • Hettwer, W., Horstmann, P.F., Bischoff, S., Güllmar, D., Reichenbach, J.R., Poh, P.S.P., van Griensven, M., Gras, F. & Diefenbeck, M. (2019). Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur. APMIS, 127(2), 53-63. Doi: 10.1111/apm.12918.
  • Komori, T. (2015). Animal models for osteoporosis. Eur J Pharmacol, 759, 287-294.
  • Lill, C.A., Hesseln, J., Schlegel, U., Eckhardt, C., Goldhahn, J. & Schneider, E. (2003). Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res, 21, 836- 842.
  • Lucchini, J.P., Aurelle, J.L., Therin, M., Donath, K. & Becker, W. (1996). A pilot study comparing screw-shaped implants. Surface analysis and histologic evaluation of bone healing. Clin Oral Implants Res., 7(4), 397-404. Doi: 10.1034/j.1600-0501.1996.070414.x.
  • Mayr, H.O., Suedkamp, N.P., Hammer, T., Hein, W., Hube, R., Roth, P.V. & Bernstein, A. (2015). β-Tricalcium phosphate for bone replacement: stability and integration in sheep. J Biomech., 48(6), 1023-1031. Doi: 10.1016/j.jbiomech.2015.01.040.
  • Mazoochian, F., Hölzer, A., Jalali, J., Schmidutz, F., Schröder, C., Woiczinski, M., Maierl, J., Augat, P. & Jansson, V. (2012). Finite element analysis of the ovine hip: development, results and comparison with the human hip. Vet Comp Orthop Traumatol. 25(4), 301-316. Doi: 10.3415/VCOT-11-09-0132.
  • Newman, E., Turner, A.S., & Wark, J.D. (1995). The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone, 16, 277-284. Doi: 10.1016/8756-3282(95)00026-a.
  • Oheim, R., Amling, M., Ignatius, A. & Pogoda, P. (2012). Large animal model for osteoporosis in humans: the ewe. Eur Cells Mater, 24, 372–385
  • Ohyama, T., Yasuda, H., Shibuya, N., Tadokoro, S., Nakabayashi, S., Namaki, S., Hara, Y., Ogawa, T. & Ishigami, T. (2017). Three-dimensional finite element analysis of the effects of implant diameter and photofunctionalization on peri-implant stress. J Oral Sci. 59(2), 273-278. Doi: 10.2334/josnusd.16-0144.
  • Shea, J.E., Hallows, R.K., Ricks, S. & Bloebaum, R.D. (2002). Microvascularization of the hypermineralized calcified fibrocartilage and cortical bone in the sheep proximal femur. Anat Rec., 268(4), 365-370. Doi: 10.1002/ar.10173.
  • Simpson, A.H. & Murray, I.R. (2016). Main differences in osteoporotic fracture models: which should I use? Injury, 47, 15-20.
  • Solidworks 2018, (2018). Dassault Systèmes Solidworks Corporation. Waltham MA, USA.
  • Tu, Y.K., Liu, Y.Ç., Yang, W.J., Chen, L.W., Hong, Y.Y., Chen, Y.C. & Lin, L.C. (2009). Temperature rise simulation during a kirschner pin drilling in bone. Bioinformatics and Biomedical Engineering, ICBBE 2009 3rd International Conference on. Beijing 2009, p. 1-4.
  • Turner, A.S. (2002). The sheep as a model for osteoporosis in humans. Vet J, 163, 232-239.
  • Vetter, A., Liu, Y., Witt, F., Manjubala, I., Sander, O., Epari, D.R., Fratzl, P., Duda, G.N. & Weinkamer, R. (2011). The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: A finite element study based on sheep experiments. Journal of Biomechanics, 44, 517–523.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yılmaz Güvercin 0000-0003-1861-2083

Murat Yaylacı 0000-0003-0407-1685

Early Pub Date December 30, 2021
Publication Date December 31, 2021
Submission Date June 5, 2021
Acceptance Date August 8, 2021
Published in Issue Year 2021 Volume: 6 Issue: 4

Cite

APA Güvercin, Y., & Yaylacı, M. (2021). İnsan ve Koyun Femur Kemiğinin Sonlu Elemanlar Yöntemiyle Karşılaştırılması. Journal of Anatolian Environmental and Animal Sciences, 6(4), 599-603. https://doi.org/10.35229/jaes.948214


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg