Research Article
BibTex RIS Cite

Oreochromis niloticus’da Böbrek ve Kas Dokularında Çinko Oksit Nanopartikülleri ve Çinko Sülfatın Birikimi

Year 2021, Volume: 6 Issue: 4, 498 - 505, 31.12.2021
https://doi.org/10.35229/jaes.960788

Abstract

Bu araştırmada ZnO NP ve ZnSO4’ın etkisine bırakılan Oreochromis niloticus ’un böbrek ve kas dokularında çinko birikimi karşılaştırmalı olarak incelenmiştir. Balıklar 0. 5, 2.5 ve 5.0 mg/L ZnO NP ve ZnSO4’ ın ortam derişimlerine 3 ve 15 günlük sürelerle bırakılarak dokularındaki çinko birikimi Atomik Absorbsiyon Spektrofotometrik yöntemlerle saptanmıştır. Bu çalışmada ZnO NP ve ZnSO4’ın etkisine bırakılan balıkların dokularında çinkonun birikimi ortamdaki Zn derişimi ve sürenin artmasıyla artmıştır. Denenen tüm şartlarda ZnO NP’lerin etkisine bırakılan balıkların dokusundaki çinko birikimi, ZnSO4’ın etkisine bırakılan balıklara oranla daha düşük düzeyde olduğu bulunmuştur

Supporting Institution

Çukurova Üniversitesi Bilimsel Araştırma Projeleri birimi (BAP)

Project Number

FYL-2019-12481

Thanks

Bu çalışma Çukurova Üniversitesi Bilimsel Araştırma Projeleri birimi (BAP) tarafından desteklenmiştir (Proje No: FYL-2019-12481).

References

  • Abdel-Khalek, A.A., Kadry, M.A.M., Badran, S.R., & Marie, M.S. (2015). Comparative Toxicity of Copper Oxide Bulk and Nano Particles in Nile Tilapia; Oreochromis niloticus: Biochemical and Oxidative Stress. Journal of Basic and Applied Biology, 72, 43-57. https://doi.org/10.1016/j.jobaz.2015.04.001
  • Adhikari, S., Ghosh, L., Rai, S.P., & Ayyappan, S. (2009). Metal concentrations in water, sediment, and fish from sewage-fed aquaculture ponds of Kolkata, India. Environmental Monitoring and Assessment 159, 217–230. https://doi.org/10.1007/s10661-008-0624-8
  • Aschberger, K.,Micheletti,C.,Sokull-Kl ¨ uttgen, B., & Christensen,F.M. (2011). Analysis of currently available data for characterising the risk of engineered nanoma- terials to the environment and human health—lessons learned fromfourcase studies. Environ. Int.37(6), 1143–1156. https://doi.org/10.1016/j.envint.2011.02.005
  • Auffan, M., Rose, J., Wiesner, M.R., & Bottero, J.Y. (2009). Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 157, 1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002
  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P.L. (2009). Nanoparticles: Their Potential Toxicity, Waste and Environmental Management. Waste Management, 29, 2587-2595. https://doi.org/10.1016/j.wasman.2009.04.001
  • Cicik, B, Ay, O., & Karayakar, F (2004). Effects of lead and cadmium interactions on the metal accumulation in tissue and organs of the Nile Tilapia (Oreochromis niloticus). Bull Environ Contam Toxicol, 72, 141–148.
  • Dieni, C.A., Callaghan, N.I., Gormley, P.T., Alison Butler, K., M., & MacCormack, T.J. (2014). Physiological hepatic response to zinc oxide nanoparticle exposure in the white sucker, Catostomus commersonii. Comparative Biochemistry and Physiology, Part C 162, 51–61.
  • Firat, O., Çogun, H. Y., Aslanyavrusu, S. & Kargin, F., (2009). Antioxidant Responses and Metal Accumulation in Tissues of Oreochromis niloticus under Zn, Cd and Zn+Cd Exposures. Journal of Applied Toxicology, 29, 295-301.
  • Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., & Barber, D.S. (2007). Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environmental Science & Technology, 41, 8178-8186.
  • Hao, L., & Chen, L. (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety 80, 103–110.
  • Hao, L., Chen, L., Hao, J., & Zhong, N. (2013). Bioaccumulation and Sub-Acute Toxicity of Zinc Oxide Nanoparticles in Juvenile Carp (Cyprinus carpio): A Comparative Study with Its Bulk Counterparts. Ecotoxicology and Environmental Safety, 91:52-60. https://doi.org/10.1016/j.ecoenv.2013.01.007
  • Handy, R.D., Kammer, F.V.D., Lead, J.R., Hassellóv, M., Owen, R., & Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314.
  • Heath, A. G., (1995). Water Pollut i on and Fish Physi ol ogy. Levis, CRC Press. Boca Raton, FL Hussain, M.M., & Kaphalia, B.S. (1990). Bioconcenration of Cadmium, Manganese and Lead in some Common Species of Wild Birds from Lucknow City. J. Environ. Biol. 11(2), 193-201.
  • Isani, G., Falcioni, M.L., Barucca, G., Sekar, D., Andreani, G., Carpene,´ E., & Falcioni, G. (2013) Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf 97, 40–46. https://doi.org/10.1016/j.ecoenv.2013.07.001
  • Joo, H.S., Kalbassi, M.R., Yu, I.J., Lee, J.H., & Johar, S.A. (2013). Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss), influence of concentration and salinity. Aquat Toxicol 140, 141:398–406. https://doi.org/10.1016/j.aquatox.2013.07.003
  • Kahru, A., & Dubourguier, H.C. (2010). From Ecotoxicology to Nanoecotoxicology. Toxicology 269, 105–119
  • Kargın, F., & Erdem, C. (1992). Bakır- Çinko Etkileşiminde Tilapia nilotica (L.)’nın Karaciğer, solungaç ve Kas Dokularındaki Metal Birikimi. Doğa-Tr. J. Zool., 16, 343–348.
  • Kim, S.G., Jang, S.W., Lee, Y.J., & Kim, S.S. (2011). Cu accumulation and elimination in the tissues of the olive flounder Paralichthys olivaceus. Fish Aquat Sci 14, 210–217.
  • Lecoanet, H.F., & Wiesner, M.R. (2004). Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38, 4377–4382.
  • Li, L.Z., Zhou, D.M., Peijnenburg, W.J.G.M., Gested, C.A.M., & Jin, S.Y. (2011). Toxicity of zinc oxide nanoparticles in the earth worm, Eiseniafetida and subcellular fractionation of Zn. Environ. Int. 37, 1098–1104.
  • Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H.R., & Larsen, E.H. (2011). Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 8(1), 1-14.
  • Lu, L., Liu, G., Wang, J., & Yuan Liu, Y. (2017). Accumulation and health risk assessment of trace elements in Carassius auratus gibelio from subsidence pools in the Huainan coalfield in China. Environ Monit Assess.189, 479-495. https://doi.org/10.1007/s10661-017-6178-x
  • Mansouri, B., Maleki, A., Davari, B., Johari, S.A., Shahmoradi, B., Mohammadi, E., & Shahsavari, S. (2016). Histopathological Effects Following Short-Term Coexposure of Cyprinus carpio to Nanoparticles of TiO2 and CuO. Environmental Monitoring and Assessment, 188(575), 5-12. https://doi.org/10.1007/s10661-016-5579-6
  • Nabavi, S.F., Nabavi, S.M., Latifi, A.M., Eslami, S., & Ebrahimzadeh, M.A. (2012). Determination of trace elements level of pikeperch collected from the Caspian Sea. Bulletin of Environmental Contamnation and Toxicology, 88, 401–405.
  • Osmond, M.J., & McCall, M.J. (2010). Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4, 15–41.
  • Palaniappan, P.L.R.M., & Karthikeyan, S. (2009). Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci 21, 229–236
  • Poopal, R.K., Ramesh, M., Maruthappan, V., & Babu Rajendran, R. (2017). Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol Res 6(4), 505–520. https://doi.org/10.1039/c7tx00084g
  • Ribeiro, A.M., Risso, W.E., Fernandes, M.N., & Martinez, C.B.R. (2014). Lead accumulation and its effects on the branchial physiology of Prochilodus lineatus. Fish Physiol Biochem, 40, 645–657.
  • Shobana, C.,Rangasamy, B., Poopal, R.K., Renuka, S., & Ramesh, M. (2018). Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. Environmental Science and Pollution Research 25, 11812–11832. https://doi.org/10.1007/s11356-018-1454-z
  • Smith, B.P., Hejtmancik, E., & Camp, B.J. (1976). Acute Effects of Cadmium on Ictalurus punctatus (Catfish). Bull Environ Contam Toxicol 15, 271-277.
  • Squadrone, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzia, T., Guarise, S., Bendetto, A., & Abete, M.C. (2013). Heavy metals distribution in muscle, liver, kidney and gills of European catfih (Silurus glanis) from Italian Rivers. Chemosphere 90, 358–365.
  • Sorensen, E.M. (1991). Metal poisoning in fish. CRC Press, Boca Raton, FL Sun, O., Wang, Q., Jena, P., & Kawazoe, Y. (2005). Clustering of Ti on a C-60 surface and its effect on hydrogen storage. J Am Chem Soc 127, 14582–14583.
  • Thaker, J., Chhaya,J., Nuzhat, S.,Mittal, R.,Mansuri,A.P., & Kundu, R. (1996). Effects of chromium(V1) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus Apes. Toxicology. 112, 237-244.
  • Turkmen, M., Turkmen, A., Tepe, Y., Tore, & Y., Ates_, A. (2009). Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem. 113, 233–237.
  • Uysal, K., Emre, Y., & Köse, E. (2008). The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem J 90(1), 67–70.
  • Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of Nano-Scale TiO2, ZnO and Their Bulk Counterparts on Zebrafish: Acute Toxicity, Oxidative Stress and Oxidative Damage. Science of the Total Environment, 409, 1444-1452. https://doi.org/10.1016/j.scitotenv.2011.01.015
  • Zhu, M.T., Feng, W.Y., Wang, B., Wang, T.C., Gu, Y.Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y.L., & Chai, Z.F. (2008). Comparative study of pulmonary responses to nano and submicron-sized ferric oxide in rats. Toxicology 247, 102–111.

Accumulation of Zinc Oxide Nanoparticles and Zinc Sulphate in Kidney and Muscle Tissues in Oreochromis niloticus

Year 2021, Volume: 6 Issue: 4, 498 - 505, 31.12.2021
https://doi.org/10.35229/jaes.960788

Abstract

Bu araştırmada ZnO NP ve ZnSO4’ın etkisine bırakılan Oreochromis niloticus ’un böbrek ve kas dokularında çinko birikimi karşılaştırmalı olarak incelenmiştir. Balıklar 0. 5, 2.5 ve 5.0 mg/L ZnO NP ve ZnSO4’ ın ortam derişimlerine 3 ve 15 günlük sürelerle bırakılarak dokularındaki çinko birikimi Atomik Absorbsiyon Spektrofotometrik yöntemlerle saptanmıştır. Bu çalışmada ZnO NP ve ZnSO4’ın etkisine bırakılan balıkların dokularında çinkonun birikimi ortamdaki Zn derişimi ve sürenin artmasıyla artmıştır. Denenen tüm şartlarda ZnO NP’lerin etkisine bırakılan balıkların dokusundaki çinko birikimi, ZnSO4’ın etkisine bırakılan balıklara oranla daha düşük düzeyde olduğu bulunmuştur

Project Number

FYL-2019-12481

References

  • Abdel-Khalek, A.A., Kadry, M.A.M., Badran, S.R., & Marie, M.S. (2015). Comparative Toxicity of Copper Oxide Bulk and Nano Particles in Nile Tilapia; Oreochromis niloticus: Biochemical and Oxidative Stress. Journal of Basic and Applied Biology, 72, 43-57. https://doi.org/10.1016/j.jobaz.2015.04.001
  • Adhikari, S., Ghosh, L., Rai, S.P., & Ayyappan, S. (2009). Metal concentrations in water, sediment, and fish from sewage-fed aquaculture ponds of Kolkata, India. Environmental Monitoring and Assessment 159, 217–230. https://doi.org/10.1007/s10661-008-0624-8
  • Aschberger, K.,Micheletti,C.,Sokull-Kl ¨ uttgen, B., & Christensen,F.M. (2011). Analysis of currently available data for characterising the risk of engineered nanoma- terials to the environment and human health—lessons learned fromfourcase studies. Environ. Int.37(6), 1143–1156. https://doi.org/10.1016/j.envint.2011.02.005
  • Auffan, M., Rose, J., Wiesner, M.R., & Bottero, J.Y. (2009). Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 157, 1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002
  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P.L. (2009). Nanoparticles: Their Potential Toxicity, Waste and Environmental Management. Waste Management, 29, 2587-2595. https://doi.org/10.1016/j.wasman.2009.04.001
  • Cicik, B, Ay, O., & Karayakar, F (2004). Effects of lead and cadmium interactions on the metal accumulation in tissue and organs of the Nile Tilapia (Oreochromis niloticus). Bull Environ Contam Toxicol, 72, 141–148.
  • Dieni, C.A., Callaghan, N.I., Gormley, P.T., Alison Butler, K., M., & MacCormack, T.J. (2014). Physiological hepatic response to zinc oxide nanoparticle exposure in the white sucker, Catostomus commersonii. Comparative Biochemistry and Physiology, Part C 162, 51–61.
  • Firat, O., Çogun, H. Y., Aslanyavrusu, S. & Kargin, F., (2009). Antioxidant Responses and Metal Accumulation in Tissues of Oreochromis niloticus under Zn, Cd and Zn+Cd Exposures. Journal of Applied Toxicology, 29, 295-301.
  • Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., & Barber, D.S. (2007). Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environmental Science & Technology, 41, 8178-8186.
  • Hao, L., & Chen, L. (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety 80, 103–110.
  • Hao, L., Chen, L., Hao, J., & Zhong, N. (2013). Bioaccumulation and Sub-Acute Toxicity of Zinc Oxide Nanoparticles in Juvenile Carp (Cyprinus carpio): A Comparative Study with Its Bulk Counterparts. Ecotoxicology and Environmental Safety, 91:52-60. https://doi.org/10.1016/j.ecoenv.2013.01.007
  • Handy, R.D., Kammer, F.V.D., Lead, J.R., Hassellóv, M., Owen, R., & Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314.
  • Heath, A. G., (1995). Water Pollut i on and Fish Physi ol ogy. Levis, CRC Press. Boca Raton, FL Hussain, M.M., & Kaphalia, B.S. (1990). Bioconcenration of Cadmium, Manganese and Lead in some Common Species of Wild Birds from Lucknow City. J. Environ. Biol. 11(2), 193-201.
  • Isani, G., Falcioni, M.L., Barucca, G., Sekar, D., Andreani, G., Carpene,´ E., & Falcioni, G. (2013) Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf 97, 40–46. https://doi.org/10.1016/j.ecoenv.2013.07.001
  • Joo, H.S., Kalbassi, M.R., Yu, I.J., Lee, J.H., & Johar, S.A. (2013). Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss), influence of concentration and salinity. Aquat Toxicol 140, 141:398–406. https://doi.org/10.1016/j.aquatox.2013.07.003
  • Kahru, A., & Dubourguier, H.C. (2010). From Ecotoxicology to Nanoecotoxicology. Toxicology 269, 105–119
  • Kargın, F., & Erdem, C. (1992). Bakır- Çinko Etkileşiminde Tilapia nilotica (L.)’nın Karaciğer, solungaç ve Kas Dokularındaki Metal Birikimi. Doğa-Tr. J. Zool., 16, 343–348.
  • Kim, S.G., Jang, S.W., Lee, Y.J., & Kim, S.S. (2011). Cu accumulation and elimination in the tissues of the olive flounder Paralichthys olivaceus. Fish Aquat Sci 14, 210–217.
  • Lecoanet, H.F., & Wiesner, M.R. (2004). Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38, 4377–4382.
  • Li, L.Z., Zhou, D.M., Peijnenburg, W.J.G.M., Gested, C.A.M., & Jin, S.Y. (2011). Toxicity of zinc oxide nanoparticles in the earth worm, Eiseniafetida and subcellular fractionation of Zn. Environ. Int. 37, 1098–1104.
  • Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H.R., & Larsen, E.H. (2011). Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 8(1), 1-14.
  • Lu, L., Liu, G., Wang, J., & Yuan Liu, Y. (2017). Accumulation and health risk assessment of trace elements in Carassius auratus gibelio from subsidence pools in the Huainan coalfield in China. Environ Monit Assess.189, 479-495. https://doi.org/10.1007/s10661-017-6178-x
  • Mansouri, B., Maleki, A., Davari, B., Johari, S.A., Shahmoradi, B., Mohammadi, E., & Shahsavari, S. (2016). Histopathological Effects Following Short-Term Coexposure of Cyprinus carpio to Nanoparticles of TiO2 and CuO. Environmental Monitoring and Assessment, 188(575), 5-12. https://doi.org/10.1007/s10661-016-5579-6
  • Nabavi, S.F., Nabavi, S.M., Latifi, A.M., Eslami, S., & Ebrahimzadeh, M.A. (2012). Determination of trace elements level of pikeperch collected from the Caspian Sea. Bulletin of Environmental Contamnation and Toxicology, 88, 401–405.
  • Osmond, M.J., & McCall, M.J. (2010). Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4, 15–41.
  • Palaniappan, P.L.R.M., & Karthikeyan, S. (2009). Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci 21, 229–236
  • Poopal, R.K., Ramesh, M., Maruthappan, V., & Babu Rajendran, R. (2017). Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol Res 6(4), 505–520. https://doi.org/10.1039/c7tx00084g
  • Ribeiro, A.M., Risso, W.E., Fernandes, M.N., & Martinez, C.B.R. (2014). Lead accumulation and its effects on the branchial physiology of Prochilodus lineatus. Fish Physiol Biochem, 40, 645–657.
  • Shobana, C.,Rangasamy, B., Poopal, R.K., Renuka, S., & Ramesh, M. (2018). Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. Environmental Science and Pollution Research 25, 11812–11832. https://doi.org/10.1007/s11356-018-1454-z
  • Smith, B.P., Hejtmancik, E., & Camp, B.J. (1976). Acute Effects of Cadmium on Ictalurus punctatus (Catfish). Bull Environ Contam Toxicol 15, 271-277.
  • Squadrone, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzia, T., Guarise, S., Bendetto, A., & Abete, M.C. (2013). Heavy metals distribution in muscle, liver, kidney and gills of European catfih (Silurus glanis) from Italian Rivers. Chemosphere 90, 358–365.
  • Sorensen, E.M. (1991). Metal poisoning in fish. CRC Press, Boca Raton, FL Sun, O., Wang, Q., Jena, P., & Kawazoe, Y. (2005). Clustering of Ti on a C-60 surface and its effect on hydrogen storage. J Am Chem Soc 127, 14582–14583.
  • Thaker, J., Chhaya,J., Nuzhat, S.,Mittal, R.,Mansuri,A.P., & Kundu, R. (1996). Effects of chromium(V1) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus Apes. Toxicology. 112, 237-244.
  • Turkmen, M., Turkmen, A., Tepe, Y., Tore, & Y., Ates_, A. (2009). Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem. 113, 233–237.
  • Uysal, K., Emre, Y., & Köse, E. (2008). The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem J 90(1), 67–70.
  • Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of Nano-Scale TiO2, ZnO and Their Bulk Counterparts on Zebrafish: Acute Toxicity, Oxidative Stress and Oxidative Damage. Science of the Total Environment, 409, 1444-1452. https://doi.org/10.1016/j.scitotenv.2011.01.015
  • Zhu, M.T., Feng, W.Y., Wang, B., Wang, T.C., Gu, Y.Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y.L., & Chai, Z.F. (2008). Comparative study of pulmonary responses to nano and submicron-sized ferric oxide in rats. Toxicology 247, 102–111.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Onur Ünal This is me 0000-0002-8475-1295

Ferit Kargın

Project Number FYL-2019-12481
Early Pub Date December 30, 2021
Publication Date December 31, 2021
Submission Date July 1, 2021
Acceptance Date October 31, 2021
Published in Issue Year 2021 Volume: 6 Issue: 4

Cite

APA Ünal, O., & Kargın, F. (2021). Oreochromis niloticus’da Böbrek ve Kas Dokularında Çinko Oksit Nanopartikülleri ve Çinko Sülfatın Birikimi. Journal of Anatolian Environmental and Animal Sciences, 6(4), 498-505. https://doi.org/10.35229/jaes.960788


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS