Research Article
BibTex RIS Cite

Karadeniz'in deniz sedimentlerinden izole edilen Gram-negatif heterotrofik bakterilerin antibiyotik direnci-CLSI ve EUCAST'ın çevresel izolatlar üzerinde karşılaştırılması

Year 2022, Volume: 7 Issue: 2, 163 - 170, 30.06.2022
https://doi.org/10.35229/jaes.1039437

Abstract

Deniz sedimentleri, antibiyotiklerin ve dirençli genlerin önemli rezervuarlarıdır. Antibiyotik direnci günümüzde küresel bir sorun haline gelmektedir ve deniz sedimentlerinden gelen bakteriler, çoklu mikrobiyal ajanlara direnç göstermektedir. Bu çalışma, Karadeniz'in deniz sedimentlerinden izole edilen Gram-negatif heterotrofik bakterilerin antibiyotik direncini araştırmaktadır. Örnekler, Mayıs 2019 ile Şubat 2020 arasında Karadeniz'deki çeşitli örnekleme istasyonlarından toplanmıştır. VITEK 2 sistemi, farklı antibiyotiklere karşı MIC değerlerini otomatik olarak tespit etmek için kullanılmıştır. MİK değerleri 0.12 µg/ml ile 80 µg/ml arasında değişiklik göstermiştir. Tüm antibiyotikler arasında en yüksek direnç oranları sefazoline karşı CLSI'de %90 ve EUCAST'da %81 olarak tespit edilmiştir. Direnç oranları genel olarak CLSI'de %13.4, EUCAST’da ise %26,1 olarak belirlenmiştir. Tüm izolatların meropenem, sefepim, seftazidim, kolistin, ertapenem ve piperasilin/tazobaktama duyarlı olduğu tespit edilmiştir. MAR indeksleri 0 ile 0.45 arasında bulunmuştur. Tüm izolatlarda 0.2 değerinin üzerinde veya eşit olan MAR indeksi CLSI'de %27 ve EUCAST'ta %81 olarak tespit edilmiştir. Bu çalışma, doğal izolatlar arasında antibiyotik maruziyetini gösterme açısından EUCAST'ın CLSI'den daha iyi olabileceğini ve MAR indeksinin çevresel durumu tanımlamada yararlı bir araç olabileceğini belirtmektedir. Bu çalışmanın sonuçları, Karadeniz sedimentlerinde antibiyotik direncinin ciddi bir endişe kaynağı olabileceğini göstermektedir.

References

  • Akinbowale, O. L., Peng, H., Grant, P., & Barton, M. D. (2007). Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. International journal of antimicrobial agents, 30(2), 177-182. DOI: 10.1016/j.ijantimicag.2007.03.012
  • Akkan, T. (2017). Antibiotic resistance case study: Enterobacteriaceae isolated from Batlama Creek in Giresun, Turkey. Turkish Journal of Agriculture-Food Science and Technology, 5(8), 969-972. DOI: 10.24925/turjaf.v5i8.969-972.1262
  • Akkan, T., & Mutlu, C. (2016). Determination of antibiotics resistance levels in Enterobacteriaceae isolated from Giresun coasts. Turkish Journal of Agriculture-Food Science and Technology, 4(8), 640-650. DOI: 10.24925/turjaf.v4i8.640-650.721
  • Altunsoy, A., Aypak, C., Azap, A., Ergönül, Ö., & Balık, İ. (2011). The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. International journal of medical sciences, 8(4), 339. https://doi.org/10.7150/ijms.8.339
  • Arias, C. A., & Murray, B. E. (2009). Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. New England Journal of Medicine, 360(5), 439-443. DOI: 10.1056/NEJMp0804651
  • Barry, A. L. (1976). The antimicrobic susceptibility test: principles and practices. Lippincott Williams & Wilkins. USA.
  • Capkin E, Terzi E, Altinok I (2015). Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Dis Aquat Org, 114, 127-137. DOI:10.3354/dao02852
  • Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., ... & Webster, N. S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569-586. DOI: 10.1038/s41579-019-0222-5
  • Chung, H. C., & Lee, R. P. (2011). Multidrug-resistant bacteria in the hospital: the focus of nursing care. Hu li za zhi The journal of nursing, 58(4), 11-15. PMID: 21809282
  • CLSI (Clinical and Laboratory Standards Institute). (2018). Performance standards for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed. CLSI standard M07. Clinical and Laboratory Standards Institute, Wayne, PA
  • Collignon, P. (2015). Antibiotic resistance: are we all doomed?. Internal medicine journal, 45(11), 1109-1115. DOI: 10.1111/imj.12902
  • Duarte-Neto, A. N. (2019). Pathology of infectious diseases: new agents, opportunistic, neglectable, emergent, reemergent diseases and why not super resistant nosocomial bacteria?. Autopsy & case reports, 9(3). DOI: 10.4322/acr.2019.126
  • Erdem, A. K., Aydogdu, E. O. A., Gulener, M., Zorbozan, H., Balci, M., Yesilova, K., & Balkis, N. (2017). The determination of bacterıologıcal quality of Kilyos-İğneada coast and sea water. Fresenius Environmental Bulletin, 26(1), 533-544.
  • Erdem, A. K., Aydoğdu, E. Ö. A., Gürün, S., & Altun, Ö. (2015). Determination of multiple antibiotic and heavy metal resistance of the bacteria isolated from the Küçükçekmece Lagoon, Turkey. Polish Journal of Environmental Studies, 24(3), 1077-1084. DOI: 10.15244/pjoes/29202
  • EUCAST (The European Committee on Antimicrobial Susceptibility Testing). (2021). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, Date of Access: 1 December 2021. http://www.eucast.org.
  • European Commission. (2017). A European One Health Action Plan against Antimicrobial Resistance (AMR) Brussels: European Commission. Date of Access: 19.12.2021 https://ec.europa.eu/health/amr/sites/amr/files/amr_action_plan_2017_en.pdf
  • Gerlach, E. H. (1974). Microdilution I: a comparative study. Current techniques for antibiotic susceptibility testing. (Ed) Charles C Thomas, Sprinfield, Ill, 63-76.
  • Gul-Seker, M., & Mater, Y. (2009). Assessment of metal and antibiotic-resistance in marine bacteria isolated from Izmit Bay and Bosphorus entrance of Marmara and Black Sea, Turkey. Fresenius Environmental Bulletin, 18(11A), 2192-2202.
  • Gur, D., Aydemir, Ş., Çöplü N., Gülay, Z., Hasdemir, U., Karahan, Z. C., Karatuna, O., Kayacan, Z. Ç., Söyletir, G. (2016). Antibiyotik Duyarlılık Testleri, EUCAST: Uygulama, Yorum ve Uzman Kurallar, Türk Mikrobiyoloji Cemiyeti Dergisi, 46.
  • Isler, B., Keske, Ş., Aksoy, M., Azap, Ö. K., Yilmaz, M., Yavuz, S. Ş., ... & Ergönül, Ö. (2019). Antibiotic overconsumption and resistance in Turkey. Clinical Microbiology and Infection, 25(6), 651-653. DOI: 10.1016/j.cmi.2019.02.024
  • Işık, H., Akkan, T. (2021). The Global Problem of the Antibiotic and Heavy Metal Resistance in Aquatic Resources, An examination of Gelevera Creek (Giresun), Turkey. Journal of Anatolian Environmental and Animal Sciences, 6(3), 382-389. DOI: 10.35229/jaes.960110
  • Jacome, M. P. O., & Gonzales-Zubiate, F. A. (2019). How to stop the spreading of super bacteria?. Brasil Para Todos-Revista Internacional, 7(1), 10-14.
  • Kayis, S., Capkin, E., & Altinok, I. (2009). Bacteria in Rainbow Trout (Oncorhynchus mykiss) in the Southern Black Sea Region of Turkey - A Survey. The Israeli Journal of Aquaculture - Bamidgeh, 61(4), 339-344.
  • Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214(1), 163-174. DOI: 10.1007/s11270-010-0412-2
  • Kimiran-Erdem, A., Arslan, E. O., Yurudu, N. O. S., Zeybek, Z., Dogruoz, N., & Cotuk, A. (2007). Isolation and identification of enterococci from seawater samples: assessment of their resistance to antibiotics and heavy metals. Environmental Monitoring and Assessment, 125(1), 219-228. DOI: 10.1007/s10661-006-9506-0
  • Kingsley, P., & Taylor, E. M. (2017). One Health: competing perspectives in an emerging field. Parasitology, 144(1), 7-14. DOI: 10.1017/S0031182015001845
  • Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and environmental microbiology, 46(1), 165-170. DOI: 10.1128/AEM.46.1.165-170.1983
  • Léger, A., Stärk, K. D., Rushton, J., & Nielsen, L. R. (2018). A one health evaluation of the University of Copenhagen Research Centre for control of antibiotic resistance. Frontiers in veterinary science, 5(194). DOI: 10.3389/fvets.2018.00194
  • Lima e Silva, A. A. D., Carvalho, M. A., de Souza, S. A., Dias, P. M. T., Silva Filho, R. G. D., Saramago, C. S., ... & Hofer, E. (2012). Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43, 1620-1631. ISSN 1517-8382
  • MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510-514. DOI: 10.1038/s41558-018-0161-6
  • MacLowry, J. D., & Marsh, H. H. (1968). Semiautomatic microtechnique for serial dilution-antibiotic sensitivity testing in the clinical laboratory. The Journal of laboratory and clinical medicine, 72(4), 685-687. DOI: 10.5555/uri:pii:0022214368901960
  • Matyar, F. (2012). Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bulletin of environmental contamination and toxicology, 89(3), 551-556. DOI: 10.1007/s00128-012-0726-4
  • Matyar, F., Kaya, A., & Dinçer, S. (2008). Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Science of the Total Environment, 407(1), 279-285. DOI: 10.1016/j.scitotenv.2008.08.014
  • McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: a one health perspective. Microbiology spectrum, 6(2), 6-2. DOI: 10.1128/MICROBIOLSPEC.ARBA-0009-2017
  • Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., & Nies, D. H. (2010). Survival of bacteria on metallic copper surfaces in a hospital trial. Applied microbiology and biotechnology, 87(5), 1875-1879. DOI: 10.1007/s00253-010-2640-1
  • Miranda, C. D., & Castillo, G. (1998). Resistance to antibiotic and heavy metals of motile aeromonads from Chilean freshwater. Science of the total environment, 224(1-3), 167-176. DOI: 10.1016/S0048-9697(98)00354-4
  • Ozaktas, T., Taskin, B., & Gozen, A. G. (2012). High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment. Water research, 46(19), 6382-6390. DOI: 10.1016/j.watres.2012.09.010
  • Özcan, K., Aksoy, S. Ç., Kalkan, O., Uzel, A., Hames-Kocabas, E. E., & Bedir, E. (2013). Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. Journal of Soils and Sediments, 13(8), 1493-1501. DOI: 10.1007/s11368-013-0734-y
  • Pathak, S. P., & Gopal, K. (2005). Occurrence of antibiotic and metal resistance in bacteria from organs of river fish. Environmental research, 98(1), 100-103. DOI: 10.1016/j.envres.2004.05.012
  • Rakici, E., Altunisik, A., Sahin, K., & Ozgumus, O. B. (2021). Determination and molecular analysis of antibiotic resistance in Gram-negative enteric bacteria isolated from Pelophylax sp. in the Eastern Black Sea Region. Acta Veterinaria Hungarica, 69(3), 223-233. DOI: 10.1556/004.2021.00039
  • Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., ... & Woolhouse, M. E. (2016). Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(7), 377-380. DOI: 10.1093/trstmh/trw048
  • Rüegg, S. R., Häsler, B., & Zinsstag, J. (Eds.). (2018). Integrated approaches to health: a handbook for the evaluation of One Health. Wageningen Academic Publishers.
  • Sabatino, R., Di Cesare, A., Dzhembekova, N., Fontaneto, D., Eckert, E. M., Corno, G., & Callieri, C. (2020). Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea. Marine Pollution Bulletin, 160, 111635. DOI: 10.1016/j.marpolbul.2020.111635
  • Schlüsener, M. P., & Bester, K. (2006). Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environmental Pollution, 143(3), 565-571. DOI: 10.1016/j.envpol.2005.10.049
  • Sütterlin, S., Téllez-Castillo, C. J., Anselem, L., Yin, H., Bray, J. E., & Maiden, M. C. (2018). Heavy metal susceptibility of Escherichia coli isolated from urine samples from Sweden, Germany, and Spain. Antimicrobial agents and chemotherapy, 62(5), e00209-18. DOI: 10.1128/AAC.00209-18
  • Thavasi, R., Aparnadevi, K., Jayalakshmi, S., & Balasubramanian, T. (2007). Plasmid mediated antibiotic resistance in marine bacteria. Journal of Environmental Biology, 28(3), 617.
  • Ture, M., & Alp, H. (2016). Identification of bacterial pathogens and determination of their antibacterial resistance profiles in some cultured fish in Turkey. Journal of Veterinary Research, 60(2), 141-146. DOI: 10.1515/jvetres-2016-0020
  • Ture, M., Altinok, I., & Alp, H. (2018). Effects of cage farming on antimicrobial and heavy metal resistance of Escherichia coli, Enterococcus faecium, and Lactococcus garvieae. Microbial Drug Resistance, 24(9), 1422-1430. DOI: 10.1089/mdr.2018.0040
  • Ug, A., & Ceylan, Ö. (2003). Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp. Archives of medical research, 34(2), 130-136. DOI: 10.1016/S0188-4409(03)00006-7
  • Weinstein, M. P., Patel JB, Burnhman C-A, ZImmer BL. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approval CDM-A. Clinical and Laboratory Standards Institute, Wayne, PA.
  • WHO. (2015) Global action plan on antimicrobial resistance, Date of Access: 7 December 2021. https://www.who.int/antimicrobial-resistance/global-action-plan/en/
  • Xu, M., Wu, J., & Chen, L. (2019). Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish. Environmental Science and Pollution Research, 26(26), 27338-27352. DOI: 10.1007/s11356-019-05287-8
  • Yamina, B., Tahar, B., Lila, M., Hocine, H., & Laure, F. M. (2014). Study on cadmium resistant-bacteria isolated from hospital wastewaters. Advances in Bioscience and Biotechnology, 5 (8). DOI: 10.4236/abb.2014.58085
  • Yang, J., Wang, C., Shu, C., Liu, L., Geng, J., Hu, S., & Feng, J. (2013). Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microbial ecology, 65(4), 975-981. DOI: 10.1007/s00248-013-0187-2
  • Zinsstag, J., Schelling, E., Bonfoh, B., Fooks, A. R., Kasymbekov, J., Waltner-Toews, D., & Tanner, M. (2009). Towards a ‘One Health’research and application tool box. Veterinaria italiana, 45(1), 121-133.

Antibiotic Resistance of Gram-negative Heterotrophic Bacteria on the Marine Sediments of the Black Sea-Comparison of CLSI and EUCAST on the Environmental Isolates

Year 2022, Volume: 7 Issue: 2, 163 - 170, 30.06.2022
https://doi.org/10.35229/jaes.1039437

Abstract

Marine sediments are the important reservoirs of antibiotics and resistant genes. Antibiotic resistance becomes a global concern today and bacteria from marine sediments show resistance to multiple microbial agents. This study investigates antibiotic resistance of Gram-negative heterotrophic bacteria from the marine sediment of the Black Sea. The samples were gathered from various sampling locations on the marine environments of the Black Sea between May 2019 and February 2020. The VITEK 2 system was utilized to detect the MIC values against different antibiotics automatically. The MIC values were ranged from 0.12 µg/ml to 80 µg/ml. The highest resistance ratios among all antibiotics were detected as 90% in CLSI and 81% in EUCAST against cefazolin. In general, the resistance ratios were determined as 13.4% in CLSI and 26.1% in EUCAST. All isolates were detected as susceptible to meropenem, cefepime, ceftazidime, colistin, ertapenem, and piperacillin/tazobactam. MAR indexes were ranged between 0 and 0.45. MAR index were detected above or equal the value of 0.2 as 27% in CLSI and 81% in EUCAST among all isolates. This study shows that EUCAST may be better than CLSI in terms of showing the antibiotic exposure among natural isolates and the MAR indexes may be a useful tool for defining the environmental status. The results of this study indicate that antibiotic resistance may be a serious concern in sediments of the Black Sea.

References

  • Akinbowale, O. L., Peng, H., Grant, P., & Barton, M. D. (2007). Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. International journal of antimicrobial agents, 30(2), 177-182. DOI: 10.1016/j.ijantimicag.2007.03.012
  • Akkan, T. (2017). Antibiotic resistance case study: Enterobacteriaceae isolated from Batlama Creek in Giresun, Turkey. Turkish Journal of Agriculture-Food Science and Technology, 5(8), 969-972. DOI: 10.24925/turjaf.v5i8.969-972.1262
  • Akkan, T., & Mutlu, C. (2016). Determination of antibiotics resistance levels in Enterobacteriaceae isolated from Giresun coasts. Turkish Journal of Agriculture-Food Science and Technology, 4(8), 640-650. DOI: 10.24925/turjaf.v4i8.640-650.721
  • Altunsoy, A., Aypak, C., Azap, A., Ergönül, Ö., & Balık, İ. (2011). The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. International journal of medical sciences, 8(4), 339. https://doi.org/10.7150/ijms.8.339
  • Arias, C. A., & Murray, B. E. (2009). Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. New England Journal of Medicine, 360(5), 439-443. DOI: 10.1056/NEJMp0804651
  • Barry, A. L. (1976). The antimicrobic susceptibility test: principles and practices. Lippincott Williams & Wilkins. USA.
  • Capkin E, Terzi E, Altinok I (2015). Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Dis Aquat Org, 114, 127-137. DOI:10.3354/dao02852
  • Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., ... & Webster, N. S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569-586. DOI: 10.1038/s41579-019-0222-5
  • Chung, H. C., & Lee, R. P. (2011). Multidrug-resistant bacteria in the hospital: the focus of nursing care. Hu li za zhi The journal of nursing, 58(4), 11-15. PMID: 21809282
  • CLSI (Clinical and Laboratory Standards Institute). (2018). Performance standards for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed. CLSI standard M07. Clinical and Laboratory Standards Institute, Wayne, PA
  • Collignon, P. (2015). Antibiotic resistance: are we all doomed?. Internal medicine journal, 45(11), 1109-1115. DOI: 10.1111/imj.12902
  • Duarte-Neto, A. N. (2019). Pathology of infectious diseases: new agents, opportunistic, neglectable, emergent, reemergent diseases and why not super resistant nosocomial bacteria?. Autopsy & case reports, 9(3). DOI: 10.4322/acr.2019.126
  • Erdem, A. K., Aydogdu, E. O. A., Gulener, M., Zorbozan, H., Balci, M., Yesilova, K., & Balkis, N. (2017). The determination of bacterıologıcal quality of Kilyos-İğneada coast and sea water. Fresenius Environmental Bulletin, 26(1), 533-544.
  • Erdem, A. K., Aydoğdu, E. Ö. A., Gürün, S., & Altun, Ö. (2015). Determination of multiple antibiotic and heavy metal resistance of the bacteria isolated from the Küçükçekmece Lagoon, Turkey. Polish Journal of Environmental Studies, 24(3), 1077-1084. DOI: 10.15244/pjoes/29202
  • EUCAST (The European Committee on Antimicrobial Susceptibility Testing). (2021). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, Date of Access: 1 December 2021. http://www.eucast.org.
  • European Commission. (2017). A European One Health Action Plan against Antimicrobial Resistance (AMR) Brussels: European Commission. Date of Access: 19.12.2021 https://ec.europa.eu/health/amr/sites/amr/files/amr_action_plan_2017_en.pdf
  • Gerlach, E. H. (1974). Microdilution I: a comparative study. Current techniques for antibiotic susceptibility testing. (Ed) Charles C Thomas, Sprinfield, Ill, 63-76.
  • Gul-Seker, M., & Mater, Y. (2009). Assessment of metal and antibiotic-resistance in marine bacteria isolated from Izmit Bay and Bosphorus entrance of Marmara and Black Sea, Turkey. Fresenius Environmental Bulletin, 18(11A), 2192-2202.
  • Gur, D., Aydemir, Ş., Çöplü N., Gülay, Z., Hasdemir, U., Karahan, Z. C., Karatuna, O., Kayacan, Z. Ç., Söyletir, G. (2016). Antibiyotik Duyarlılık Testleri, EUCAST: Uygulama, Yorum ve Uzman Kurallar, Türk Mikrobiyoloji Cemiyeti Dergisi, 46.
  • Isler, B., Keske, Ş., Aksoy, M., Azap, Ö. K., Yilmaz, M., Yavuz, S. Ş., ... & Ergönül, Ö. (2019). Antibiotic overconsumption and resistance in Turkey. Clinical Microbiology and Infection, 25(6), 651-653. DOI: 10.1016/j.cmi.2019.02.024
  • Işık, H., Akkan, T. (2021). The Global Problem of the Antibiotic and Heavy Metal Resistance in Aquatic Resources, An examination of Gelevera Creek (Giresun), Turkey. Journal of Anatolian Environmental and Animal Sciences, 6(3), 382-389. DOI: 10.35229/jaes.960110
  • Jacome, M. P. O., & Gonzales-Zubiate, F. A. (2019). How to stop the spreading of super bacteria?. Brasil Para Todos-Revista Internacional, 7(1), 10-14.
  • Kayis, S., Capkin, E., & Altinok, I. (2009). Bacteria in Rainbow Trout (Oncorhynchus mykiss) in the Southern Black Sea Region of Turkey - A Survey. The Israeli Journal of Aquaculture - Bamidgeh, 61(4), 339-344.
  • Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214(1), 163-174. DOI: 10.1007/s11270-010-0412-2
  • Kimiran-Erdem, A., Arslan, E. O., Yurudu, N. O. S., Zeybek, Z., Dogruoz, N., & Cotuk, A. (2007). Isolation and identification of enterococci from seawater samples: assessment of their resistance to antibiotics and heavy metals. Environmental Monitoring and Assessment, 125(1), 219-228. DOI: 10.1007/s10661-006-9506-0
  • Kingsley, P., & Taylor, E. M. (2017). One Health: competing perspectives in an emerging field. Parasitology, 144(1), 7-14. DOI: 10.1017/S0031182015001845
  • Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and environmental microbiology, 46(1), 165-170. DOI: 10.1128/AEM.46.1.165-170.1983
  • Léger, A., Stärk, K. D., Rushton, J., & Nielsen, L. R. (2018). A one health evaluation of the University of Copenhagen Research Centre for control of antibiotic resistance. Frontiers in veterinary science, 5(194). DOI: 10.3389/fvets.2018.00194
  • Lima e Silva, A. A. D., Carvalho, M. A., de Souza, S. A., Dias, P. M. T., Silva Filho, R. G. D., Saramago, C. S., ... & Hofer, E. (2012). Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43, 1620-1631. ISSN 1517-8382
  • MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510-514. DOI: 10.1038/s41558-018-0161-6
  • MacLowry, J. D., & Marsh, H. H. (1968). Semiautomatic microtechnique for serial dilution-antibiotic sensitivity testing in the clinical laboratory. The Journal of laboratory and clinical medicine, 72(4), 685-687. DOI: 10.5555/uri:pii:0022214368901960
  • Matyar, F. (2012). Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bulletin of environmental contamination and toxicology, 89(3), 551-556. DOI: 10.1007/s00128-012-0726-4
  • Matyar, F., Kaya, A., & Dinçer, S. (2008). Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Science of the Total Environment, 407(1), 279-285. DOI: 10.1016/j.scitotenv.2008.08.014
  • McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: a one health perspective. Microbiology spectrum, 6(2), 6-2. DOI: 10.1128/MICROBIOLSPEC.ARBA-0009-2017
  • Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., & Nies, D. H. (2010). Survival of bacteria on metallic copper surfaces in a hospital trial. Applied microbiology and biotechnology, 87(5), 1875-1879. DOI: 10.1007/s00253-010-2640-1
  • Miranda, C. D., & Castillo, G. (1998). Resistance to antibiotic and heavy metals of motile aeromonads from Chilean freshwater. Science of the total environment, 224(1-3), 167-176. DOI: 10.1016/S0048-9697(98)00354-4
  • Ozaktas, T., Taskin, B., & Gozen, A. G. (2012). High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment. Water research, 46(19), 6382-6390. DOI: 10.1016/j.watres.2012.09.010
  • Özcan, K., Aksoy, S. Ç., Kalkan, O., Uzel, A., Hames-Kocabas, E. E., & Bedir, E. (2013). Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. Journal of Soils and Sediments, 13(8), 1493-1501. DOI: 10.1007/s11368-013-0734-y
  • Pathak, S. P., & Gopal, K. (2005). Occurrence of antibiotic and metal resistance in bacteria from organs of river fish. Environmental research, 98(1), 100-103. DOI: 10.1016/j.envres.2004.05.012
  • Rakici, E., Altunisik, A., Sahin, K., & Ozgumus, O. B. (2021). Determination and molecular analysis of antibiotic resistance in Gram-negative enteric bacteria isolated from Pelophylax sp. in the Eastern Black Sea Region. Acta Veterinaria Hungarica, 69(3), 223-233. DOI: 10.1556/004.2021.00039
  • Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., ... & Woolhouse, M. E. (2016). Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(7), 377-380. DOI: 10.1093/trstmh/trw048
  • Rüegg, S. R., Häsler, B., & Zinsstag, J. (Eds.). (2018). Integrated approaches to health: a handbook for the evaluation of One Health. Wageningen Academic Publishers.
  • Sabatino, R., Di Cesare, A., Dzhembekova, N., Fontaneto, D., Eckert, E. M., Corno, G., & Callieri, C. (2020). Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea. Marine Pollution Bulletin, 160, 111635. DOI: 10.1016/j.marpolbul.2020.111635
  • Schlüsener, M. P., & Bester, K. (2006). Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environmental Pollution, 143(3), 565-571. DOI: 10.1016/j.envpol.2005.10.049
  • Sütterlin, S., Téllez-Castillo, C. J., Anselem, L., Yin, H., Bray, J. E., & Maiden, M. C. (2018). Heavy metal susceptibility of Escherichia coli isolated from urine samples from Sweden, Germany, and Spain. Antimicrobial agents and chemotherapy, 62(5), e00209-18. DOI: 10.1128/AAC.00209-18
  • Thavasi, R., Aparnadevi, K., Jayalakshmi, S., & Balasubramanian, T. (2007). Plasmid mediated antibiotic resistance in marine bacteria. Journal of Environmental Biology, 28(3), 617.
  • Ture, M., & Alp, H. (2016). Identification of bacterial pathogens and determination of their antibacterial resistance profiles in some cultured fish in Turkey. Journal of Veterinary Research, 60(2), 141-146. DOI: 10.1515/jvetres-2016-0020
  • Ture, M., Altinok, I., & Alp, H. (2018). Effects of cage farming on antimicrobial and heavy metal resistance of Escherichia coli, Enterococcus faecium, and Lactococcus garvieae. Microbial Drug Resistance, 24(9), 1422-1430. DOI: 10.1089/mdr.2018.0040
  • Ug, A., & Ceylan, Ö. (2003). Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp. Archives of medical research, 34(2), 130-136. DOI: 10.1016/S0188-4409(03)00006-7
  • Weinstein, M. P., Patel JB, Burnhman C-A, ZImmer BL. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approval CDM-A. Clinical and Laboratory Standards Institute, Wayne, PA.
  • WHO. (2015) Global action plan on antimicrobial resistance, Date of Access: 7 December 2021. https://www.who.int/antimicrobial-resistance/global-action-plan/en/
  • Xu, M., Wu, J., & Chen, L. (2019). Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish. Environmental Science and Pollution Research, 26(26), 27338-27352. DOI: 10.1007/s11356-019-05287-8
  • Yamina, B., Tahar, B., Lila, M., Hocine, H., & Laure, F. M. (2014). Study on cadmium resistant-bacteria isolated from hospital wastewaters. Advances in Bioscience and Biotechnology, 5 (8). DOI: 10.4236/abb.2014.58085
  • Yang, J., Wang, C., Shu, C., Liu, L., Geng, J., Hu, S., & Feng, J. (2013). Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microbial ecology, 65(4), 975-981. DOI: 10.1007/s00248-013-0187-2
  • Zinsstag, J., Schelling, E., Bonfoh, B., Fooks, A. R., Kasymbekov, J., Waltner-Toews, D., & Tanner, M. (2009). Towards a ‘One Health’research and application tool box. Veterinaria italiana, 45(1), 121-133.
There are 55 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Samet Kalkan 0000-0002-5110-5609

Early Pub Date June 16, 2022
Publication Date June 30, 2022
Submission Date December 21, 2021
Acceptance Date March 21, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Kalkan, S. (2022). Antibiotic Resistance of Gram-negative Heterotrophic Bacteria on the Marine Sediments of the Black Sea-Comparison of CLSI and EUCAST on the Environmental Isolates. Journal of Anatolian Environmental and Animal Sciences, 7(2), 163-170. https://doi.org/10.35229/jaes.1039437


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg