Review
BibTex RIS Cite

The Effectiveness of Macroalgae and 3- Nitrooxypropanol for Mitigation of Enteric Methane Emissions in Cattle

Year 2022, Volume: 7 Issue: 4, 516 - 522, 31.12.2022
https://doi.org/10.35229/jaes.1180444

Abstract

Methane (CH4) originating from enteric fermentation in ruminants, especially in cattle, is both an important greenhouse gas and causes a 12% loss in adult gross energy. Therefore, cost-effective strategies are needed to reduce metagenesis in the ruminant production system. Recent studies have shown that the chemically synthesized compound 3-Nitrooxypropanol (3-NOP) has the potential to reduce enteric CH4 production by up to 30%. Asparagopsis taxiformis has proven to be a potent enteric CH4 inhibitor without affecting milk yield or nutrient utilization. However, there are some concerns that feeding seaweed to ruminants may lead to a spike in milk and/or meat bromoform content with potential implications for consumer health. The purpose of this review is to examine the general findings of in vivo and in vitro studies showing the efficacy of 3-NOP and red macroalgae.

References

  • Referans1 Abbott, D.W., Aasen, I. M., Beauchemin, K.A., Grondahl, F., Gruninger, R., Hayes, M., ... & Xing, X. (2020). Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals, 10(12), 2432.
  • Referans2 Abdela, N. (2016). Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achievements in the life sciences, 10(2), 187-196.
  • Referans3 Alemu, A.W., Pekrul, L.K., Shreck, A.L., Booker, C.W., McGinn, S.M., Kindermann, M., & Beauchemin, K.A. (2021). 3-Nitrooxypropanol decreased enteric methane production from growing beef cattle in a commercial feedlot: implications for sustainable beef cattle production. Frontiers in Animal Science, 2, 641590.
  • Referans4 Arndt, C., Hristov, A.N., Price, W.J., McClelland, S.C., Pelaez, A.M., Cueva, S.F., ... & Yu, Z. (2022). Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5° C target by 2030 but not 2050. Proceedings of the National Academy of Sciences, 119(20), e2111294119.
  • Referans5 Attwood, G.T., Altermann, E., Kelly, W.J., Leahy, S.C., Zhang, L., & Morrison, M. (2011). Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Animal Feed Science and Technology, 166, 65-75.
  • Referans6 Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., & Wang, M. (2020). Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal, 14(S1), s2-s16.
  • Referans7 Bergman, E.N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological reviews, 70(2), 567-590.
  • Referans8 Bikker, P., Stokvis, L., Van Krimpen, M. M., Van Wikselaar, P. G., & Cone, J. W. (2020). Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Animal Feed Science and Technology, 263, 114460.
  • Referans9 Brooke, C. G., Roque, B. M., Najafi, N. Gonzalez, M., Pfefferlen, A., DeAnda, V., Ginsburg, D.W., Harden, M.C., Nuzhdin, S.V. & Salwen, J.K. (2018). Evaluation of the potential of two common pacific coast macroalgae for mitigating methane emissions from ruminants. bioRxiv., 434480
  • Referans10 Caro, D., Kebreab, E., & Mitloehner, F.M. (2016). Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Climatic Change, 137(3), 467-480.
  • Referans11 Chen, H., Gan, Q., & Fan, C. (2020). Methyl-coenzyme M reductase and its post-translational modifications. Frontiers in Microbiology, 11, 578356.
  • Referans12 Dijkstra, J., Bannink, A., France, J., Kebreab, E., & Van Gastelen, S. (2018). Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. Journal of Dairy Science, 101(10), 9041-9047.
  • Referans13 Duin, E.C., Wagner, T., Shima, S., Prakash, D., Cronin, B., Yáñez-Ruiz, D.R., ... & Kindermann, M. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences, 113(22), 6172-6177.
  • Referans14 Eckard, R.J., Grainger, C., & De Klein, C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock science, 130(1-3), 47-56.
  • Referans15 EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis, V., Azimonti, G., Bastos, M. D. L., Christensen, H., Dusemund, B., ... & Pizzo, F. (2021). Safety and efficacy of a feed additive consisting of 3‐nitrooxypropanol (Bovaer® 10) for ruminants for milk production and reproduction (DSM Nutritional Products Ltd). EFSA Journal, 19(11), e06905.
  • Referans16 European Commission (2022). Daily News 23 / 02 / 2022. European Commission - European Commission. [Text]. https://ec.europa.eu/commission/presscorner/detail/de/mex_22_1304 [2022-03-29]
  • Referans17 Glasson, C.R., Kinley, R.D., de Nys, R., King, N., Adams, S.L., Packer, M.A., ... & Magnusson, M. (2022). Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 64, 102673.
  • Referans18 Henderson, G., Cook, G.M., & Ronimus, R.S. (2016). Enzyme-and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. Animal Production Science, 58(6), 1017-1026.
  • Referans19 Hristov, A.N., Oh, J., Giallongo, F., Frederick, T.W., Harper, M.T., Weeks, H.L., ... & Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 112(34), 10663-10668.
  • Referans20 Hristov, A.N., Ott, T., Tricarico, J., Rotz, A., Waghorn, G., Adesogan, A., ... & Firkins, J.L. (2013). Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, 91(11), 5095-5113.
  • Referans21 Janssen, P.H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 160(1-2), 1-22. 22. Referans22 Johnson, K.A., & Johnson, D.E. (1995). Methane emissions from cattle. Journal of animal science, 73(8), 2483-2492.
  • Referans22 Kim, H., Lee, H.G., Baek, Y.C., Lee, S., & Seo, J. (2020). The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. Journal of Animal Science and Technology, 62(1), 31.
  • Referans23Kinley, R.D., Martinez-Fernandez, G., Matthews, M.K., de Nys, R., Magnusson, M., & Tomkins, N.W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, 120836.
  • Referans24 Leahy, S.C., Kelly, W.J., Ronimus, R.S., Wedlock, N., Altermann, E., & Attwood, G. T. (2013). Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal, 7(s2), 235-243.
  • Referans25 Li, X., Norman, H. C., Kinley, R.D., Laurence, M., Wilmot, M., Bender, H., ... & Tomkins, N. (2016). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58(4), 681-688.
  • Referans26 Machado, L., Magnusson, M., Paul, N.A., de Nys, R., & Tomkins, N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One, 9(1), e85289.
  • Referans27 Machado, L., Magnusson, M., Paul, N.A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28(2), 1443-1452.
  • Referans28 Machado, L., Tomkins, N., Magnusson, M., Midgley, D. J., de Nys, R., & Rosewarne, C.P. (2018). In vitro response of rumen microbiota to the antimethanogenic red macroalga Asparagopsis taxiformis. Microbial Ecology, 75(3), 811-818.
  • Referans29 Makkar, H. P., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1-17.
  • Referans30 Martínez-Fernández, G., Abecia, L., Arco, A., Cantalapiedra-Hijar, G., Martín-García, A. I., Molina-Alcaide, E., ... & Yáñez-Ruiz, D.R. (2014). Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. Journal of Dairy Science, 97(6), 3790-3799.
  • Referans31 Matthews, R. G. (2009). Cobalamin-and corrinoid-dependent enzymes. Metal Ions in Life Sciences, 6, 53.
  • Referans32 McGinn, S.M., Flesch, T.K., Beauchemin, K.A., Shreck, A., & Kindermann, M. (2019). Micrometeorological Methods for Measuring Methane Emission Reduction at Beef Cattle Feedlots: Evaluation of 3‐Nitrooxypropanol Feed Additive. Journal of environmental quality, 48(5), 1454-1461.
  • Referans33Melgar, A., Harper, M. T., Oh, J., Giallongo, F., Young, M. E., Ott, T. L., ... & Hristov, A. N. (2020). Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. Journal of Dairy Science, 103(1), 410-432
  • Referans34 Melgar, A., Lage, C.F.A., Nedelkov, K., Räisänen, S.E., Stefenoni, H., Fetter, M.E., ... & Hristov, A. N. (2021). Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. Journal of Dairy Science, 104(1), 357-366.
  • Referans35Muizelaar, W., Groot, M., van Duinkerken, G., Peters, R., & Dijkstra, J. (2021). Safety and transfer study: Transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods, 10(3), 584.
  • Referans36 Patra, A., Park, T., Kim, M., & Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8(1), 1-18.
  • Referans37 Romero-Perez, A., Okine, E.K., McGinn, S. M., Guan, L.L., Oba, M., Duval, S. M., ... & Beauchemin, K.A. (2014). The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. Journal of animal science, 92(10), 4682-4693.
  • Referans38 Roque, B.M., Brooke, C.G., Ladau, J., Polley, T., Marsh, L.J., Najafi, N., ... & Hess, M. (2019b). Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome, 1(1), 1-14.
  • Referans39 Roque, B.M., Venegas, M., Kinley, R.D., de Nys, R., Duarte, T.L., Yang, X. and Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One, 16(3), p.e0247820.
  • Referans40 Stefenoni, H.A., Räisänen, S.E., Cueva, S.F., Wasson, D.E., Lage, C.F.A., Melgar, A., ... & Hristov, A. N. (2021). Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. Journal of Dairy Science, 104(4), 4157-4173.
  • Referans41 Terry, S., Krüger, A., Lima, P.D.M.T., Gruninger, R., Abbott, W., & Beauchemin, K. (2022). Evaluation of Rumen Fermentation and Microbial Adaptation to Three Red Seaweeds Using the Rumen Simulation Technique. https://doi.org/10.20944/preprints202208.0186.v1
  • Referans42 Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 6(8), 579-591.
  • Referans43 Thiel, A., Rümbeli, R., Mair, P., Yeman, H., & Beilstein, P. (2019). 3-NOP: ADME studies in rats and ruminating animals. Food and Chemical Toxicology, 125, 528-539.
  • Referans44 Tseten, T., Sanjorjo, R. A., Kwon, M., & TT, S.W.K. (2022). Strategies to mitigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol., 32(3), 269-277.
  • Referans45 Van Wesemael, D., Vandaele, L., Ampe, B., Cattrysse, H., Duval, S., Kindermann, M., ... & Peiren, N. (2019). Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science, 102(2), 1780-1787.
  • Referans46 Villar, M.L., Hegarty, R.S., Nolan, J. V., Godwin, I.R., & McPhee, M. (2020). The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Animal Feed Science and Technology, 259, 114294.
  • Referans47 Vyas, D., Alemu, A.W., McGinn, S.M., Duval, S.M., Kindermann, M., & Beauchemin, K. A. (2018). The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. Journal of Animal Science, 96(7), 2923-2938.
  • Referans48 Vyas, D., McGinn, S. M., Duval, S.M., Kindermann, M., & Beauchemin, K.A. (2016). Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle. Journal of Animal Science, 94(5), 2024-2034.
  • Referans49 Wood, J. M., Kennedy, F. S., & Wolfe, R. S. (1968). Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 7(5), 1707-1713.
  • Referans50Yu, G., Beauchemin, K.A. & Dong, R., 2021. A review of 3-Nitrooxypropanol for enteric methane mitigation from ruminant livestock. Animals, 11(12), 3540.

Sığırlarda Enterik Metan Emisyonlarının Azaltılmasında Makroalg ve 3-Nitrooksipropanol’un Etkinliği

Year 2022, Volume: 7 Issue: 4, 516 - 522, 31.12.2022
https://doi.org/10.35229/jaes.1180444

Abstract

Ruminantlarda özellikle sığırlarda enterik fermantasyondan kaynaklanan metan (CH4), hem öneli bir sera gazıdır ve hem de yein brüt enerjisinde %12 bir kayba neden olur. Bu nedenle, ruminant üretim sisteminde metajenezi azaltmak için uygun maliyetli stratejilere ihtiyaç vardır. Son çalışmalar, kimyasal olarak sentezlenen bileşik 3-Nitrooxypropanol (3-NOP), enterik CH4 üretimini %30'a kadar azaltma potansiyeline sahip olduğunu göstermiştir. Asparagopsis taxiformis’in, süt verimini veya besin madde kullanımını etkilemeksizin güçlü bir enterik CH4 inhibitörü olduğu kanıtlanmıştır. Bununla birlikte, deniz yosununun geviş getiren hayvanlara verilmesinin, süt ve/veya et bromoform içeriğinde tüketici sağlığı üzerinde potansiyel etkileri olan bir artışa yol açabileceğine dair bazı endişeler vardır. Bu derlemenin amacı, 3-NOP ve kırmızı makroalglerin etkinlik durumlarını gösteren in vivo ve in vito çalışmaların genel bulgularını incelemektir.

References

  • Referans1 Abbott, D.W., Aasen, I. M., Beauchemin, K.A., Grondahl, F., Gruninger, R., Hayes, M., ... & Xing, X. (2020). Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals, 10(12), 2432.
  • Referans2 Abdela, N. (2016). Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achievements in the life sciences, 10(2), 187-196.
  • Referans3 Alemu, A.W., Pekrul, L.K., Shreck, A.L., Booker, C.W., McGinn, S.M., Kindermann, M., & Beauchemin, K.A. (2021). 3-Nitrooxypropanol decreased enteric methane production from growing beef cattle in a commercial feedlot: implications for sustainable beef cattle production. Frontiers in Animal Science, 2, 641590.
  • Referans4 Arndt, C., Hristov, A.N., Price, W.J., McClelland, S.C., Pelaez, A.M., Cueva, S.F., ... & Yu, Z. (2022). Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5° C target by 2030 but not 2050. Proceedings of the National Academy of Sciences, 119(20), e2111294119.
  • Referans5 Attwood, G.T., Altermann, E., Kelly, W.J., Leahy, S.C., Zhang, L., & Morrison, M. (2011). Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Animal Feed Science and Technology, 166, 65-75.
  • Referans6 Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., & Wang, M. (2020). Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal, 14(S1), s2-s16.
  • Referans7 Bergman, E.N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological reviews, 70(2), 567-590.
  • Referans8 Bikker, P., Stokvis, L., Van Krimpen, M. M., Van Wikselaar, P. G., & Cone, J. W. (2020). Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Animal Feed Science and Technology, 263, 114460.
  • Referans9 Brooke, C. G., Roque, B. M., Najafi, N. Gonzalez, M., Pfefferlen, A., DeAnda, V., Ginsburg, D.W., Harden, M.C., Nuzhdin, S.V. & Salwen, J.K. (2018). Evaluation of the potential of two common pacific coast macroalgae for mitigating methane emissions from ruminants. bioRxiv., 434480
  • Referans10 Caro, D., Kebreab, E., & Mitloehner, F.M. (2016). Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Climatic Change, 137(3), 467-480.
  • Referans11 Chen, H., Gan, Q., & Fan, C. (2020). Methyl-coenzyme M reductase and its post-translational modifications. Frontiers in Microbiology, 11, 578356.
  • Referans12 Dijkstra, J., Bannink, A., France, J., Kebreab, E., & Van Gastelen, S. (2018). Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. Journal of Dairy Science, 101(10), 9041-9047.
  • Referans13 Duin, E.C., Wagner, T., Shima, S., Prakash, D., Cronin, B., Yáñez-Ruiz, D.R., ... & Kindermann, M. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences, 113(22), 6172-6177.
  • Referans14 Eckard, R.J., Grainger, C., & De Klein, C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock science, 130(1-3), 47-56.
  • Referans15 EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis, V., Azimonti, G., Bastos, M. D. L., Christensen, H., Dusemund, B., ... & Pizzo, F. (2021). Safety and efficacy of a feed additive consisting of 3‐nitrooxypropanol (Bovaer® 10) for ruminants for milk production and reproduction (DSM Nutritional Products Ltd). EFSA Journal, 19(11), e06905.
  • Referans16 European Commission (2022). Daily News 23 / 02 / 2022. European Commission - European Commission. [Text]. https://ec.europa.eu/commission/presscorner/detail/de/mex_22_1304 [2022-03-29]
  • Referans17 Glasson, C.R., Kinley, R.D., de Nys, R., King, N., Adams, S.L., Packer, M.A., ... & Magnusson, M. (2022). Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 64, 102673.
  • Referans18 Henderson, G., Cook, G.M., & Ronimus, R.S. (2016). Enzyme-and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. Animal Production Science, 58(6), 1017-1026.
  • Referans19 Hristov, A.N., Oh, J., Giallongo, F., Frederick, T.W., Harper, M.T., Weeks, H.L., ... & Duval, S. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 112(34), 10663-10668.
  • Referans20 Hristov, A.N., Ott, T., Tricarico, J., Rotz, A., Waghorn, G., Adesogan, A., ... & Firkins, J.L. (2013). Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, 91(11), 5095-5113.
  • Referans21 Janssen, P.H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 160(1-2), 1-22. 22. Referans22 Johnson, K.A., & Johnson, D.E. (1995). Methane emissions from cattle. Journal of animal science, 73(8), 2483-2492.
  • Referans22 Kim, H., Lee, H.G., Baek, Y.C., Lee, S., & Seo, J. (2020). The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. Journal of Animal Science and Technology, 62(1), 31.
  • Referans23Kinley, R.D., Martinez-Fernandez, G., Matthews, M.K., de Nys, R., Magnusson, M., & Tomkins, N.W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, 120836.
  • Referans24 Leahy, S.C., Kelly, W.J., Ronimus, R.S., Wedlock, N., Altermann, E., & Attwood, G. T. (2013). Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal, 7(s2), 235-243.
  • Referans25 Li, X., Norman, H. C., Kinley, R.D., Laurence, M., Wilmot, M., Bender, H., ... & Tomkins, N. (2016). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58(4), 681-688.
  • Referans26 Machado, L., Magnusson, M., Paul, N.A., de Nys, R., & Tomkins, N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One, 9(1), e85289.
  • Referans27 Machado, L., Magnusson, M., Paul, N.A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28(2), 1443-1452.
  • Referans28 Machado, L., Tomkins, N., Magnusson, M., Midgley, D. J., de Nys, R., & Rosewarne, C.P. (2018). In vitro response of rumen microbiota to the antimethanogenic red macroalga Asparagopsis taxiformis. Microbial Ecology, 75(3), 811-818.
  • Referans29 Makkar, H. P., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1-17.
  • Referans30 Martínez-Fernández, G., Abecia, L., Arco, A., Cantalapiedra-Hijar, G., Martín-García, A. I., Molina-Alcaide, E., ... & Yáñez-Ruiz, D.R. (2014). Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. Journal of Dairy Science, 97(6), 3790-3799.
  • Referans31 Matthews, R. G. (2009). Cobalamin-and corrinoid-dependent enzymes. Metal Ions in Life Sciences, 6, 53.
  • Referans32 McGinn, S.M., Flesch, T.K., Beauchemin, K.A., Shreck, A., & Kindermann, M. (2019). Micrometeorological Methods for Measuring Methane Emission Reduction at Beef Cattle Feedlots: Evaluation of 3‐Nitrooxypropanol Feed Additive. Journal of environmental quality, 48(5), 1454-1461.
  • Referans33Melgar, A., Harper, M. T., Oh, J., Giallongo, F., Young, M. E., Ott, T. L., ... & Hristov, A. N. (2020). Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. Journal of Dairy Science, 103(1), 410-432
  • Referans34 Melgar, A., Lage, C.F.A., Nedelkov, K., Räisänen, S.E., Stefenoni, H., Fetter, M.E., ... & Hristov, A. N. (2021). Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. Journal of Dairy Science, 104(1), 357-366.
  • Referans35Muizelaar, W., Groot, M., van Duinkerken, G., Peters, R., & Dijkstra, J. (2021). Safety and transfer study: Transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods, 10(3), 584.
  • Referans36 Patra, A., Park, T., Kim, M., & Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8(1), 1-18.
  • Referans37 Romero-Perez, A., Okine, E.K., McGinn, S. M., Guan, L.L., Oba, M., Duval, S. M., ... & Beauchemin, K.A. (2014). The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. Journal of animal science, 92(10), 4682-4693.
  • Referans38 Roque, B.M., Brooke, C.G., Ladau, J., Polley, T., Marsh, L.J., Najafi, N., ... & Hess, M. (2019b). Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome, 1(1), 1-14.
  • Referans39 Roque, B.M., Venegas, M., Kinley, R.D., de Nys, R., Duarte, T.L., Yang, X. and Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One, 16(3), p.e0247820.
  • Referans40 Stefenoni, H.A., Räisänen, S.E., Cueva, S.F., Wasson, D.E., Lage, C.F.A., Melgar, A., ... & Hristov, A. N. (2021). Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. Journal of Dairy Science, 104(4), 4157-4173.
  • Referans41 Terry, S., Krüger, A., Lima, P.D.M.T., Gruninger, R., Abbott, W., & Beauchemin, K. (2022). Evaluation of Rumen Fermentation and Microbial Adaptation to Three Red Seaweeds Using the Rumen Simulation Technique. https://doi.org/10.20944/preprints202208.0186.v1
  • Referans42 Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 6(8), 579-591.
  • Referans43 Thiel, A., Rümbeli, R., Mair, P., Yeman, H., & Beilstein, P. (2019). 3-NOP: ADME studies in rats and ruminating animals. Food and Chemical Toxicology, 125, 528-539.
  • Referans44 Tseten, T., Sanjorjo, R. A., Kwon, M., & TT, S.W.K. (2022). Strategies to mitigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol., 32(3), 269-277.
  • Referans45 Van Wesemael, D., Vandaele, L., Ampe, B., Cattrysse, H., Duval, S., Kindermann, M., ... & Peiren, N. (2019). Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science, 102(2), 1780-1787.
  • Referans46 Villar, M.L., Hegarty, R.S., Nolan, J. V., Godwin, I.R., & McPhee, M. (2020). The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Animal Feed Science and Technology, 259, 114294.
  • Referans47 Vyas, D., Alemu, A.W., McGinn, S.M., Duval, S.M., Kindermann, M., & Beauchemin, K. A. (2018). The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. Journal of Animal Science, 96(7), 2923-2938.
  • Referans48 Vyas, D., McGinn, S. M., Duval, S.M., Kindermann, M., & Beauchemin, K.A. (2016). Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle. Journal of Animal Science, 94(5), 2024-2034.
  • Referans49 Wood, J. M., Kennedy, F. S., & Wolfe, R. S. (1968). Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 7(5), 1707-1713.
  • Referans50Yu, G., Beauchemin, K.A. & Dong, R., 2021. A review of 3-Nitrooxypropanol for enteric methane mitigation from ruminant livestock. Animals, 11(12), 3540.
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Habip Muruz 0000-0002-1975-4545

Zeynep Tuğçe Sertkaya 0000-0002-1307-6480

Early Pub Date December 16, 2022
Publication Date December 31, 2022
Submission Date September 26, 2022
Acceptance Date December 7, 2022
Published in Issue Year 2022 Volume: 7 Issue: 4

Cite

APA Muruz, H., & Sertkaya, Z. T. (2022). Sığırlarda Enterik Metan Emisyonlarının Azaltılmasında Makroalg ve 3-Nitrooksipropanol’un Etkinliği. Journal of Anatolian Environmental and Animal Sciences, 7(4), 516-522. https://doi.org/10.35229/jaes.1180444


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg